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Application of the Modified Murakami’s Anisotropic Creep-

Damage Model to 3D Rotationally—Symrnetric Problem

A. Ganczarski, J. Skrzypek

This paper demonstrates a modification of the creep—damage equations, proposed by Murakami, Kawai and

Rang (MKR). The goals of analysis are: verification of the MKR creep—damage equations and checking

the validity of the Reissner theory in the case of a very thick structure of copper under creep—damage

conditions.

1 Introduction

Damage anisotropy is experimentally evident mainly in the case of brittle damage response where the

appropriate modification of the fourth rank constitutive tensors, stiffness or compliance, is used (cf.

Litewka (1985), Murakami and Kamiya (1997)). Under high temperature creep conditions it is usually

assumed that the damage response is of isotropic nature (cf. Kachanov (1958), Hayhurst (1972), Lemaitre

and Chaboche (1985), to mention only some). Nevertheless, even if creep damage is concerned, for some

materials it is necessary to account for the effect of damage anisotropy. There exist simple proposals to

formulate damage anisotropy under creep conditions described by some modifications of isotropic creep

damage models, by introducing additional terms being sensitive to damage anisotropy.

An interesting system of constitutive equations, containing the combined McVetty and the Mises—type

isotropic creep flow rule together with the strain hardening hypothesis
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coupled with the anisotropic damage evolution law, as an extension of the classical Hayhurst-type rule,
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was developed and identified for copper by Murakami, Kawai and Kong (1988).

In the above damage evolution equation, the first term is the Hayhurst stress function that describes

multiaxiality and nonlinearity, the second term includes anisotropic net area reduction due to damage in

direction n“) of the principal (tensile) stress exclusively, whereas the third term determines the direc—

tion of D as a linear combination between the isotropic damage growth and the direction of maximum

anisotropy nu). Note the additional material parameter 7] in eq. (2), which may be recognized as the dam—

age anisotropy parameter (weight parameter). For the particular cases 77 2 0 and 77 : 1, eq. (2) reduces

to a purely isotropic damage evolution and a purely orthotropic microcrack growth in a plane perpen—

dicular to the maximum tensile stress, respectively, whereas for 0 < 77 < 1 a mixed isotropic /orthotropic

damage growth mechanism occurs, in which damage is controlled by the maximum principal stress. The

symmetric efiective stress tensor and its deviator are of the following form (Murakami et al., 1988)
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whereas appropriate equivalent stresses are given by the definitions
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A similar equationA, but expressed by the fourth rank damage tensor 13, fourth rank unit tensor i and

anisotropy tensor F is due to Chaboche (1999)

were
k A

A x(cr)l [mlan (5)

In what follows the first of the above defined models will be used to develop a modified model for creep

damage anisotropy.

On the other hand, damage growth accompanying creep at elevated temperature is a more anisotropic

phenomenon in case when the deformation is less constrained. To emphasize this anisotropic response, a

very thick rotationally symmetric 3D plate-like problem is investigated. Release of the inner constraints,

such as Love—Kirchhoff’s or Reissner’s assumptions, when a full 3D formulation without any additional

geometric constraints is used, allows to determine a limitation of the Reissner theory under creep—damage

conditions.

2 Basic Equations

2.1 Assumptions

The displacement field fulfils the general rotational symmetry

8,,u : 0 (6)

It is postulated that the linearized total strain tensor E : (Vu + uV) may be decomposed into elastic,

creep and thermal parts

6 : ee + a“ + 5th 6th : 1&6 (7)

where 9 : T — Tief, and, additionally, the creep part is incompressible

trz-:C 2 0
(8)

2.2 Equations of Equilibrium

The system of displacement equations of the 3D continuum enriched by the creep term takes the form

(Ganczarski, 2000)

 

GV2u + 1 G2 grad (divu) = ZGDivsC V72 : grad (div) — rot (rot) (9)
“1/

and the stress is defined as follows

1} (10)

2.3 Modified Murakami’s Anisotropic Creep—Damage Equations

The direction of the damage rate D described by eq. (2) at a point depends on the linear combination of

isotropic and anisotropic tensors where the weight parameter 77 is used and calibrated as the additional

material constant. There are, however, certain regions in a structure where it is not possible to specify nu)

uniquely. For instance, the stress at the z axis of rotational symmetry fulfills the condition of symmetry

in the plane (73¢). Therefore, all unit vectors belonging to this plane may be treated as nu). In such

a case a convenient solution is a modification of the parameter 7], which introduces a certain ’7 degree of

freedom” in the modelling of the type of anisotropy. Namely, the material parameter 7] is replaced by

the new material function dependent on the positive eigenvalues of the stress tensor, in order to allow for
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damage isotropy in the region neighbouring the axis of symmetry. Hence, the following two modifications

of the damage law are proposed:

 

where 77 stands for the original parameter of anisotropy in eq. The above proposals allow to describe

a smooth transition from the strictly isotropic damage growth at the symmetry axis to the anisotropic

response in a point neighbouring this axis. In this way the intrinsic inconsistency of the MKR model

may be overcome.

3 Boundary Problem

A constant temperature field accompanies a homogeneous displacement field, but no stress fields (see

eq. (10)). Therefore a simple support is assumed to carry the mechanical load p (Fig. 1). The appropriate

boundary conditions are collected in Table 1.

     

Figure 1: Simply Supported Plate Loaded by Constant Pressure p

Table 1: Boundary Conditions

     

boundary condition

top surface oz : ‚p (7T2 : 0

bottom surface 02 : 0 (IM : 0

symmetry axis ur : 0 Brag : 0

supported edge (77. : 0 uz : 0

 

4 Numerical Algorithm for Creep-Damage Problem

To solve the initial—boundary problem by FDM, we discretize the time by inserting N time intervals

Aue, where to : 0, Atk : tk — tk_1, and M; : t1 (macrocrack initiation) (Skrzypek and Ganczarski,

1999). Hence, the initial—boundary problem is reduced to a sequence of the quasistatic boundary—value

problems, the solution of which determines an unknown displacement function at a given time tk, e.g.,

u(X‚tk) : uk (x) with the appropriate elastic solution taken as the initial condition. To account for

primary and tertiary creep regimes, a dynamically controlled time step Atk is required, the length of

which is defined by the bounded maximum damage increment

ADIW 3 11(13): {)le (x) — Dk—1(x)HAtk} g ADM)?” (13)
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Discretizing also the spatial coordinates x : [r, 4m. by inserting a mesh A7" 2 n- — r,_1, A2 2 Zj a zj_1,

we rewrite the equation of motion eq. (9) for a time step 15;, in terms of FDM with respect to 1“,- and 2,,

respectively

  

Ud—lj “Li—1 2 12(1—IJ)<ä-%)T+(1—2V)W—{2Ü*V) (ATV—fl]

2 . . “m1 _ L L
+ (1 _ 2”) (AZ)2 } u“ + (1 2") (A2 2 + 2 (1 U) (Ar + 2n

 

4ArAz 4ArAz 4ArAz 4ArAz

5167—1 r' 521+1 v' V792; x71 lgzi j+1 52,; ,- Ectpi i
.1 ‚.I ‚J „1 y. 2 »‚ 1.
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Ti
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(1-2”>(E‘5;)W+2(1 Wg)? {(1 2 NW
2 10,; w, 1"

+2(1—I/)(—AZ—)2}wi‚j+2(1—I
/)fi+(1—2U)

+wi—1‚j—1 wi+1‚j—1 winl‚j+1_wi+1‚j+1

(14)

 

+ui—1‚j—1 ui+1‚j—1 ui—1‚j+1 ui+1,j+1

4ArA2 4ArA2 4ArAz 4ArAz

_uiJ-l + “Ml-1 Z (1 _ 2V) 77:31.1‘1 +7:Zw.j+l + —5:vnrl + 621,1% + 75%:„1

ZTiAz 2nAz 2A2 AZ 1",-

Applying the stage algorithm first for the damage [Db-J. E 0, the system of equations of motion eq. (9)

and the boundary conditions (cf. Table 1) are numerically solved by use of the procedure linbcg. for of

the Conjugate Gradient Method for sparse systems (Press et al., 1993), and the elastic displacements are

determined [uelmu Next, the program enters the creep—damage loop Where the damage and the strain

rates [Dich-‘34, Eqs (1, 2) are calculated. Applying again the stage algorithm to the solution of the

creep damage problem, the rates of displacement [film are computed. In the next time step the ”new”

displacement [uh-J is found, and the process is continued until the maximum value of damage reaches the

critical level max J. = Dom. A rupture criterion can be simultaneously derived from the instability

condition of the stress—strain relation. Namely, the rupture occurs if either det : O or any of its

subdeterminants minor{H} : 0, where the matrix H is expressed as

             

1 ~ V _ 85;": 1/ 7 857C. 1/ 85?. 0

1 — 2D 85, 1 — 21/ 85¢ 1 — 2U ösz

1 ~ 1/ 5‘5; 1 — y 85:, 0

1 — 2U 85,, 1 — 21/ 35,

H : (15)

1 — V as:

1 — 2y _ 852 0

symmetry 1 —

87%;

and the partial derivative öec/ös needs to be calculated from eq. More precisely, this is the re—

quirement that the constitutive relation must always be of the Green (hyperelastic) type, and, conse-

quently, the quadratic form associated with the strain energy H : 32W/8586 must be positive definite

(Vs ETHE > 0) (Murakami et al., 1988, Chen and Han, 1988). For special cases the classical Kachanov—

Rabotnov critical damage condition DV 3 Dycm (V : 1, 2, 3) may also be used.
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5 Results

5.1 Material Data

Numerical results presented in this paper deal with plates made of copper of the following thermo-

mechanical properties at temperature 523 K (Murakami, 1988): T : 300°C, Tref : 0°C, E : 60.24 MPa,

0'0 : 11.0 MPa, V = 0.3, B : 4.46 >< 10‘13 MPa”kh“1‚ Z : 5.0, k : 5.55, E = 1.0, A1 : 2.40 >< 10*17

MPa—"l, n1 = 2.60, A2 = 3.00 X 10—16 MPa_”2h_1, n2 : 7.10, "ö? : 0.05 h’l, a : 2.5 >< 10—5.

Characteristic parameters of the plate (thickness to diameter ratio) and the magnitude of pressure are:

h /R : 0.7, p : 0.100, respectively. The parameter controlling the type of damage anisotropy is 7] : 0.5,

which means that the mixed isotropic/ maximum damage growth mechanism is considered, in which

damage is controlled by the principal stress.

5.2 Example 1 - Original MKR Formulation

In case of the original Murakami, Kawai and Rong formulation of the damage evolution law eq. (2) the

maximal principal stress type sensitivity to damage of the copper causes the first macrocrack to appear

at the center of the lower surface of the plate with respect to hoop direction D,p (Fig. 2). Two other

locally principal directions at the points belonging to the symmetry axis, radial and axial, reveal a damage

advance equal to half of the hoop direction D7, : Dz : 0.5D,9 (Fig. 3), as a consequence of 77 : 0.5.

This point, however, belongs to the axis of symmetry, where the stress exhibits symmetry 0,. : (79, so

the damage should also be equal D, : DLP. Unfortunately, this is possible for 77 2 0.0 (isotropic case)

exclusively.
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Figure 2: Hoop Damage D9, — Original Formulation by Murakami, Kawai and Rong
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Figure 3: Radial Damage DT — Original Formulation by Murakami, Kawai and Rong

5.3 Example 2 - Modified MKR Formulation

The above mentioned defect of the original Murakami, Kawai and Rong formulation can be successfully

eliminated when the modification given by eq. (11) is taken into account. As a result7 a smooth transition

of damage anisotropy to damage isotropy is observed in the zone neighbouring the axis of symmetry

(Figs 4, 5).
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Figure 4: Hoop Damage DL; — Modified Formulation
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Figure 5: Radial Damage Dr - Modified Formulation

5.4 Comparison of the 3D vs. Reissner’s Approaches with the Modified MKR Model Used

The shape of the supported edge does not obey any of the generally applied hypotheses (Fig. 6). Detailed

analysis reveals an essential deformation of the mid-surface, which no longer coincides with the neutral

surface. Although the mechanical moduli are assumed to not be affected by damage in the model under

ar a r w r 1 - w A .7
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Figure 6: Deformation of the Plate under a Purely Mechanical Load p (Magnification X 1250)

consideration, the hoop stress is subjected to a change. Contrary to Reissner’s approach (Ganczarski and

Skrzypek, 2000), in the present 3D rotationally symmetric formulation the hoop stress is no longer linear

(Fig. 7 The other stress components, namely the axial a; and the shear stress UM, exhibit qualitative

and quantitative changes. If the axial stress oz can be well approximated by the Reissner cubic parabola

3 . . . .

—%p — 2f + ä ] during primary and secondary creep in the central part of the plate, the tertiary

creep and the boundary effect require a full 3D analysis (Fig. 8).
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Figure 7: Hoop Stress rap/00 at the Instant of First Macrocrack Initiation a), Comparison to the Reissner

Theory b)
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Figure 8: Axial Stress az/ao at the Instant of First Macrocrack Initiation a), Comparison to the Reissner

Theory b)
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Similarly, the shear stress 0” cannot be properly described by the Reissner parabola —% 1 7 ]

even in the elastic case because it looses its symmetry with respect to mid—surface and, what is most

essential, it follows the creep-damage process (Okumura and Oguma, 1998)(Fig. 9).
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Figure 9: Shear Stress (IN/(70 at the Instant of First Macrocrack Initiation a), Comparison to the Reissner

Theory b)

6 Conclusions

o The Damage evolution described by the original MKR model eq. (2) depends locally on the com—

bination of the isotropy and anisotropy tensors 1, nu) 90 11(1), respectively. This turns out to be

intrinsically inconsistent in the case of plane stress isotropy (771(0) : 04, (0)7 which always exists

at the symmetry axis. The stress isotropy results here from the ” local” isotropy of the damage

growth. In order to fulfill the required damage isotropy at points belonging to the axis of sym—

metry, the modification given by eq. (11) can be introduced. It allows for a smooth transition

between the strictly isotropic damage growth at all points at the axis and an anisotropic one in the

neighbourhood.

0 Comparison between the 3D and the Reissner formulation for a mid—thick plate determines the

limitation of Reissner’s approach in the tertiary creep regime. In such a case, tertiary creep of the

thick—wall structures (thickness o< diameter) cannot be properly described in terms of the Reissner

theory and requires a full 3D continuum model.
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Symbols

Mechanical Quantities

A1>A2>ävn17n2 constants of the creep law

B, k, l, 5 , g“, 77 — constants of the damage evolution law

D — damage tensor

E, G, V - Young’s and Kirchhofi’s moduli, Poissonls ratio, respectively

h — thickness

p - pressure

R - radius

n - unit vector

u — displacement

t — time

X [7", z] — cylindrical coordinates

6,68, EC, 5th — strain: total, elastic, inelastic (creep) and thermal

0', s - stress tensor and its deviator

5.5 — effective stress and its deviator

aeq, Freq - equivalent stress and equivalent effective stress

(70 — yield stress

1 — unit tensor

Thermal Quantities

T

Tref

06

0

temperature

reference temperature

coefficient of thermal expansion

temperature change 
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