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From the Spider Leg to a Hydraulic Device

L. Zentner, S. Petkun, R. Blickhan

Workspace and control of multibody systems in nature and engineering are to a large extent determined by the

properties of the connecting joints. In contrast to technical joints the natural systems are less stijj"

incorporating viscoelastic properties and even a simple hinge joint allows for movement and limited control in

directions perpendicular to its main plane. Joints of spiders are of special interest as they are driven by

hydraulic pressure which mayfacilitate the construction ofmicro-devices.

In afirst step structure and function of a spider‘s leg has been investigated simulating movements observed in

nature. Following the example from nature a multibody system was developed. Important properties are a)

continuity ofthe material, b) local change ofmaterial properties, c) active control oflocal material properties,

and d) hydraulic or pneumatic actuation. The joints can be cascaded thus allowing for the construction of

branched multijointed systems driven by a single pressure source. Each joint can be controlled independently.

The nonactivated joints remain as stiff as the connected bodies. Thus implementation of such joints do not

increase the compliance of the total structure.

In order to facilitate the design we develop a suitable mathematical model including structure, material

properties, and control. The model is based on the theory of curved beams with large displacements.

l Introduction

In animals, a high diversity of joint types can be observed. Major differences are present with their respective

degrees of freedom and typical elasticities, which contribute to the adaptivity of the locomotive systems. The

hydraulic leg joints of spiders represent an uncommon joint construction, showing both muscular and hydraulic

driving mechanisms. With the present paper, an'approach is made to reconstruct joints of this kind by the use

of technical engineering principles and to transmit the biological functionality into technical joint models.

Spider legs consist of seven segments, connected by different types of joints. Most of the joints are driven by

muscles which act either as flexors or as extensors. At the femoro—patellar and tibio—metatarsal joint only flexor

muscles are present. The extension is performed by means of hydraulic pressure (Parry, 1959a), (Foelix, 1992).

Like the other arthropods, spiders own an open blood circulation system. The heart is located in the

opisthosoma, with the aorta passing through the petiolus to the prosoma. Hemolymph vessels are reaching far

into the limbs, with the hemolymph flowing freely back to the opisthosoma. Lacunae in between the muscles

and other tissues facilitate the free hemolymph flow. The hemolymph pressure is produced through the

contraction of muscles that tend to flatten the prosoma. Also the muscle layers on the opisthosomal body wall

play a role in maintaining the hydraulic pressure of the hemolymph (Parry, 1959b), (Wilson, 1970).

Our attention is concentrated on the femoro—patellar and tibio—metatarsal joints, which are examples of a

“semi-hydraulic” system. Any flow of the hemolymph in the membraneous area causes a movement of these

joints. The axis of rotation of these joints is located at the edge of the segments (Kamer, 1998). Under the

action of muscles the hemolymph volume in the joint decreases and the membrane is folded. With increasing

hemolymph pressure the volume increases and the joint membrane will unfold, thereby tangential forces on the

membrane are compensated. Also the pressure force on the membrane does not result in a moment relative to

the axes of rotation. Above all, the pressure force of the hemolymph in the joint area is responsible for the

rotational movement (Parry, 1959b), (Blickhan, 1983). Only in the areas of structural asymmetry the pressure is

not balanced but the torques M1, M2 are produced (Figure 1).
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Figure 1. Schematic Representation of a Joint ofa Spider, pHC - Hemolymph Pressure onto Cuticle, pHM -

Hemolymph Pressure onto Membrane, M1, M2 — Bending Moments

This paper aims to understand the construction principle and to transfer it into the technical area. The

movement and force producing principles of a spider leg can serve as a basis for hydraulic drives for micro

manipulators. The fast progress in micro technique leads to new construction solution through new materials

and technology. In the micro technique hydraulic drives occupy a leading role. Just in this connection, the

movement principle of a spider’s leg offers favourable and innovative constructive solutions.

2 Possible Technical Realisation of Hydraulic Joints

Some principles of material-constraint joints with a hydraulic drive are shown in the following figures (Figure

2-3). The joints, material coherent joints with spatially fixed invariable flexibility, are shown as asymmetric

constructions and can be driven by hydraulics or pneumatics. They can be realized a) as a segment of a body,

that has less resistance to bending e.g. through reduction ofthe material (Figure 2a)); b) as a segment of a body

with less density than the remaining parts of the body e.g. through an asymmetrically arranged opening or an

asymmetric interior (Figure 2b)-c)); c) as a segment of a body with a different anisotropy than the remaining

areas of the body e.g. through the embedding of another body (Figure 2d)).

Material coherent joints with controllable variable flexibility are built symmetrically (Figure 3). The material

has mechanical reversible properties (stiffness). Through local asymmetrical perturbation of the material, the

change of pressure produces a movement. Constructive-morphologically there are two ways to produce

movement: 1) Embedding some asymmetry into the construction (Figure 2) or 2) asymmetrical supply of energy

into a symmetrical construction (Figure 3).

Inhomogenity of Material Properties Unsymmetrical Inner Space

         

Figure 2. Material Coherent Joints with Spatially Fixed Invariable Flexibility
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Figure 3. Material Coherent Joints with Controllable Variable Flexibility: Reversible Effect on the Material at a

Desired Place with the Aim to Create a Joint

According to the shown principles (Figure 3a) a pattern was made. The

material properties of polymer tubes are changed through the local effect of a

heating source. The material becomes more compliant at the warmed location. '

The compliant area is extended through increasing pressure in the tube. That

leads to an alteration of the form. The given form of the tube will remain after

cooling down. The original form of the tube can be restored through the

renewed warming of the tube and by applying pressure. Such joints can be

used as monolithic cascade structures and separately controlled. A finger with

material coherent joints is shown in the Figure 4. The “finger” is driven ,

pneumatically.

 

Figure 4. A Finger with

Material Coherent

Joints

3 A Mathematical Model

To facilitate the design of such structures, it is necessary to set up a suitable mathematical model. For a joint

with embedded material (Figure 2d) such a model is studied. The analysis of the model helps to understand the

behaviour and the stability of the joints taking into account the material properties. The model is based on the

theory of curved beams. Another approach to a similar problem is developed in (Lauschke, 1997).

The following assumptions from classical beam theory are valid (Love, 1927), (Svetlickii, 1987):

1) The normal cross-sections of a beam, plane before deformation, remain normal and plane after deformation

(Bernoulli hypothesis), i.e. shear deformations are not taken into account;

2) The sizes of cross—section are small in comparison with the length and the radius of curvature of a beam;

3) Lines parallel to the axial line keep their lengths;

4) St.Venant’s principle holds, which says, that various, but statically equivalent, local loads produce the same

stresses in the beam.

In connection with the assumption that

the material of a beam satisfies Hooke’s

law, the solutions of problems must be

accepted only if the maximum normal

stresses, arising in a beam, remain below

the limit of proportionality for a given

material.

We introduce two orthogonal systems of

coordinates: stationary Cartesian (fixed)

ones with unit vectors e jo and mobile

  

ones with unit vectors ej (Figure 5),

attached to the neutral line. The distance

between the neutral line and the center

of mass is h .

The length of an arch sof the neutral

line is measured from the fixed end to

the free end. Under the action of slowly

 

Figure 5. Two State of the Beam: O — Unloaded, 1 ~ Loaded
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increasing forces and moments (is considered static) the beam, being deformed, transforms from state 0 into

state 1. The elastic displacements can be so large, that the form of an axial line of the beam strongly differs

from its initial course. External forces also noticeably change their direction during deformation of the beam.

For the solution of the nonlinear static problems of flexible beams it is necessary to know the behaviour of

external loads during deformation. The flexible beams will have different final forms, if, for example, a beam is

loaded in one case ”stationary“ by force (i.e. - the load does not change its direction and magnitude in the

process of deformation and in another — ”following“ - the force keeps its direction in relation to the beam

during deformation and will have a constant angle with the mobile axes.

Derivation of Vector Equations of Equilibrium of a Beam.

We consider an element of a beam of length ds (Figure 6a). The following designations are chosen: Q -

vector of internal forces, which is equal to Q = Qle1 + Qze2 + Q3123, where Ql— axial force, Q2 and Q3 —

transverse forces; M = M1e1 + M 2e2 + M 3e3 - vector of internal moments, where M1— torsional moment,

M2 and M3 - bending moments.

We consider a separate element of a beam (Figure 6b) and of a gasfilled pipe (Figure 6a) with all forces, acting

on them.

Using d’Alembert’s principle, one can obtain the following equation:

_M>£Il_f z 0 p0 =pA„ (1)
ds

where Aa - area of cross-section of a beam (pipe), p - pressure of gas, f — distributed force of interaction of

the pipe with gas.

For a beam element it is possible to derive the following equation of equilibrium with glance to the

gravitational forces of a beam:

dQ + fds + d(mg) = 0
(2)

Eliminating vector f from equations (1) and (2), we obtain:

d_Q _ d(Poei) + q
= 0

ds ds

d(mg)=
3ds ( )

The equation of equilibrium of moments, acting on an element of a beam, can be written as

dM
E + (CIXQ) + (‚182 Xq) = 0

For solving of a static problem it is not sufficient to determine Q and M, it is necessary to know the

deformation of a beam, which is determined by the local curvature K .

Equation, Connecting Vectors M and K

We consider a beam element in the deformed state described in the mobile system of coordinates. The

projection of an axial line has the curvatures K2 and K3 in planes passing through major axes of the section.

They are projections of curvature of a axial line in space.
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Assuming, that the moment M1, M2 and M3 are proportional to the changes ofcurvature of an axial line of a

beam and torsion, one can write three equations:

M, = Afimi mm) i=1,_3 (5)

where Km - torsion and curvatures before deformation. In our case Ich, = 0 , since the initial state of a beam is

straight, Ail- - are the stiffnesses under torsion and bending, which depend on s and can be given by:

f

A11 =G‘Ik; A22 =E12; A33 =E13

where E, G— Young’s modulus and

shear modulus; 12,13 — moments of

inertia of crossusection of a beam with

respect to the major axes, passing Peri P0Ae1+d(P0Ae1)

through a point O, Jk — moment of

inertia of the cross-section under torsion.

The rather simple dependence (5) of

internal moment M,- from increments of

Center ofMass

K,- is possible only in natural

coordinates. The system of equations (5)

can be expressed in term of one vector

equation (in basis e j)

 

Figure 6. An Element of the Beam, Filled with Gas: a) - Element of

Gas, b) — Element of the Pipe

M = Ax K,- = Kiei (6)

All O 0

0 0 A33

The equations (3), (4) and (6) are nonlinear equations of equilibrium and constitutive equations of a linwr

beam, when a neutral line of a loaded beam is a space curve:

29. _ d(P0e1) +

= 0

des ds q

I + (ele) + (he2xq) 2 0
(7)

M 2 AK

Equations in dimensionless form we obtain by substituting:

I 6‘433 M Z 1{2‘433(0) P = §0A33(O)
s=l£

Q 12 l O 12

~ N 0 ~ I?

h = he ‘1 = %Q Aii = AiiA33(0) K = ‘l' (8)

After transformations for a beam with constant cross-section we get the following system of equations (tilde for

dimensionless quantities is omitted):
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dQ
— + q = 0

dM de

ge— + (ele) + (he2Xq) = 0 Here: Q = (Q1 —P )e1 + Qge2 + Q3e3 (9)

M 2 AK

Equations of Equilibrium in Projections on Attached Axes

To obtain the equation system in the projections on coordinate axes, it is necessary to keep in mind, that not

only the projections of appropriate vectors depend on e , but also individual vectors fie; are functions of e.

In equations (9) we use local derivatives:

31—9 + (KXQ) + q 2 0

de

921%- + (KXM) + (ele) + (heZXq) = 0 (10)

M 2 AK

In our particular problem the beam deformations occur in the plane {x1, x2}. That is why only the basic

vectors el and c2remain in the equations. If a neutral line of a loaded beam is a planar curve (1c1 =K2 = 0),

then equations of a linear beam are:

  

in
:———— — K + — O6% Q2 3 41

2

e2 d8 + QIKS + ‘12 "‘ 0 (n)

33'613!3 + Q2 + hql z

e

M3 = A33K3

This system of nonlinear equations was solved with the program MATHEMATICA with};boundary conditions:

Q10) = 0 Q2(l) = Fri/A” ‚(5(0) = 0 (12)

with the following data for the beam (Figure 7):

l= 88.2 m; p = (1+0.1 i) bar, i=0,...‚5; h = 3.4 mm (13)

A33 =0.02 Nm; Au = 12.57 mm2; F= 10 N

The gravity force acting on the beam, was not taken

into account (qi =0). The beam is loaded with _OJ

sufficient pressure, to help the force acting on it

remains in this case without changing. It is important _0 3

to compare the theoretical results with measurements '

on the real object. The measurements were made either

with constant pressure or with constant force. The '0'5

comparison between calculated and experimental

results is shown in Figure 8. The maximum deviation .O‚7

i=0

i=1

   
between the measured and calculated displacements is i: i=4

about 12% for variable pressure and 5% for variable y

force- Figure 7: The Calculated Results: Changing of the

Beam Form under the Increasing Pressure
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Figure 8: Comparison between Calculated Results (filled marks) with the Measured Results (blank marks)

Displacement of the Beam End as Function ofForce (left) and Pressure (right)

Study of Stability of Beams

If small perturbations of loads, acting on the beam, cause ajump from one stable state to a different stable state

of equilibrium we have a stability problem. This sudden transition from one state of equilibrium to a different

one is called the loss of static stability of a beam. For finding linear equations of equilibrium of a beam after

loss of stability we assume:

Q=Q*+Q0 M=Mr+MO q=qr+Aq0 K=K*+AK (14)

where vectors assigned by an asterisk * 1* M=M*(1)+MO

are appropriate for the moment of loss

of stability; Q0, MO, AK, Aq— x”, ._„—

increments of appropriate vectors at I,» el Q=Q*(1)+Qo

transition of a beam into the buckled ‚4:; I e3

equilibrium state. Only small ggf/1

increments take place. We consider /

two states of a beam element (Figure

9): O - critical and l — buckled state.

In state 1, i.e. in basis the vectors

with asterisk * are of the form (for

example, Q3 and M3)

3

Q*1 = Eije

j=1

3

1 _Mr _ 2M*jej

i=1

  

x1

 

V

x3

Figure 9: The Beams: 0 — Critical State, 1 — Buckled Position

where Q*j and M*j are projections of vectors onto the basis {q}, therefore Qia) at Q,‘ ‚M*0) ¢ Mt

We substitute expressions (14) into equations (10) and linearize them by increments.
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‘11:” + (AxxMJD) + (new xMO) + (eleO) + (hezqu) z o
S

ddÄ + (AxeE’) + (mxoo) + Aq = o (15)
S

M0 = AAK

For rectilinear beam the linear equations (15) in projections on mobile coordinates axes are:

      

d M

e1:—-Q—°-1— - Q2»: 03 ‘ K3*Q02 + A41 2 0
d8 A33

e2 3 dQOZ + Q1* M03 + K3*Q01 + A42 = 0
(16a)d8 A33

dM

933 dem “F Q02 ‘ hAlIr = 0

(M401 M02

*— — K *M + hA = 0e1 de 3 A22 3 02 ‘11

(1M M

2 2—d802 + M3: A1011 + K3=t=Mo1 + Q03 = 0 (16b)

dQ03 M01 0
e + i: * + =d6 Q2 A“ Q1 A22 A‘13

We assume further, that q, = 0. System (16) resolves into two independent systems: (16a) and (16b). For

determination of a critical load, under which the beam loses stability in the plane of the drawing, it is sumcient

to consider system (16a). The system (16b) makes it possible to determine a critical load, under which the loss

of stability occurs out-of—plane. For this purpose, parameters Q1, Q2 , M 3 and K3 from system (11) are found

at first from (11), and then they are used in system (16) with boundary conditions:

Q01(l) = 0 Q02(l) = ö Q03(l) = ö M010) = 0 M020) = 0 M030) = 0 (17)

where ö is any small perturbation acting on a beam. If the solution of systems (16a) and (16b), describing the

changes of the form of a beam (for example, AK3 and Anz ), is comparable with the perturbation ö ‚ then the

equilibrium state of a beam is stable, otherwise - unstable.

The experimental results show good quantitative correspondence to the theoretical model.

4 Discussion and Conclusion

We have shown that the theory of curved beams is suitable for a quantitative and qualitative analysis of such

structures. The particularity of this model is that the position of the neutral line in the beams is known and

predefined (Figure 2) 2d) 3d)). The model allows for large elastic deformations and takes the mechanical and

geometrical properties into account.

The results of the stability analysis provide information about critical loads and help to avoid unstable positions

in such structures.

For the further development of the material coherent joints a cooperation is planned
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