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Some Remarks on Dissipation Postulate in Anisotropic Finite

Elasto—Plasticity

S. Cleja—Tigoiu

In the paper a new version of the dissipation postulate is properly formulated for anisotropic (isothermic)

finite elasto- plastic materials, in the context of Mandel’s type multiplicative decomposition of the

deformation gradient. Our postulate requires that the work done by internal forces {in the initial

configuration) is non-negative on small cycles of strains only. The definitions are built in terms of the

yield function in the elastic strain space, via the solutions of the differential system (rate—independent),

which governs the evolution of the irreversible variables. Some properties that are postulated or tacitly

accepted in approaches used by different authors, are proved in this approach. I emphasize some important

consequences of the formulated postulate: the existence of the smooth stress potential, certain dissipation

inequalities, which hold only for accessible pairs in the appropriate elastic range, some modified flow

rules compatible with the dissipation postulate. Some comparison with the existing results in the domain

is also presented.

1 Introduction

There exists several generalizations to large elasto—plastic deformations of Drucker’s (1952) and Il’yushin’s

(1954) dissipation postulates, formulated within the framework of infinitesimal (isothermal) theory of

plasticity, for small cycles in stress and respectively in strain space. The discussions related to the

constitutive restrictions inferred in the models by the work assumptions proposed in Green and Naghdi

(1965) approach to finite elasto—plasticity can be found in the papers by Naghdi (1990) and Srinivasa

(1997).

In multiplicative finite elasto—plasticity:

Krawietz (1981) proposed that the work during cyclic processes of stress (in terms of symmetric Piola—

Kirchhoff stress in a relaxed configuration) or elastic strain to be non-negative, under the supposition of

an invertible elastic law, the state of the material element being characterized by relaxed configuration,

elastic strain, and internal variables.

Lubliner (1986), (1990) has shown that the maximum dissipation principle or Il’yushin’s postulate leads

to certain kind of six— dimensional flow rule and not to a nine—dimensional flow rule as it was suggested

by Mandel (1972).

Marigo (1989) formalized Il’yushin’s postulate in the general framework of mechanical systems with

domains of the reversibility and the fundamental inequalities are directly applied to a class of elasto-

plastic materials, developed by Sidoroff (1984).

Lucchesi and Podio—Guidugli (1990) have extended a variation of Il’yushin’s postulate to a certain class

of isotropic materials (plastically incompressible, without internal variables) with elastic range, under the

form of axiom that requires the small cycles of the deformation gradient to be dissipative.

Within the constitutive framework introduced in Cleja—Tigoiu and Soös (1990), Cleja— Tigoiu, Part I

(1990), I postulate that the work done by internal forces (in the initial configuration) is non-negative

on small cycles of strains. The limitation to isotropic materials is removed and the extension to certain

material symmetries, pre-existing in the material, becomes possible. Just the existence and the uniqueness

of the solutions of the differential system are the key point in my approach to finite plasticity.

We remark that Mandel’s stress measure (see Mandel (1972) or equivalently Eshelby’s stress tensor (see

Epstein and Maugin (1990), Maugin (1994), Cleja—Tigoiu and Maugin (1999)), generally non-symmetric,

as well as the conjugates forces to the internal variables (see Halphen and Nguyen (1975) ) naturally

appear in the dissipation inequality.

On the other hand, I observe here that the possible explicit dependence on the relaxed configurations of

the constitutive and evolution functions, presented in a paper by Krawietz (1981), was eliminated in our

constitutive framework by the adopted assumptions.

I compare my results with other results related to the subject. All details are omitted in this paper,
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since I wish to put into evidence some general results and to form a basis for further comparisons and

developments.

The following notations will be used: Lin— the set of all second order tensor; Lin+— the set of elements

of Lz'n with positive determinant; Sym— the set of symmetric elements of Lin; Sym+ all positive definite

tensors of Sym; Ort— the orthogonal group; Ort+— the proper orthogonal group; a - b— the scalar

product of the vectors, and A - B 1: tr ABT— the scalar product of A,B 6 Lin.

2 Constitutive Framework

We briefly recall constitutive equations for elasto—plastic materials with relaxed (plastically deformed

configuration) and internal variables.

For an arbitrary given motion x, defined in a certain neighborhood of a material point X, we consider

the deformation gradient F(t) , det F(t) > 0 for t E [0,d] with d > 0, F(0) = I, and the multiplicative

decomposition of the deformation gradient into its elastic and plastic parts:

F(t) = E(t)P(t) (1)

The complete set of constitutive and evolution functions will be represented with respect to the current

relaxed configuration, Kt, in the so—called elastic strain space:

- The elastic constitutive equation in terms of Piola— Kirchhoff stress tensor H in Kt is characterized by

11/,6 = h(G,a) with G = ETE (2)

‚ö is the mass density in the relaxed configuration, and a being internal variables. The elastic constitutive

function h has the relaxation property:

h(S,a) : Ü for S e Sym+ <:> S : I (3)

- There is a smooth function i, called yield function, of the class 01, depending on the elastic strain

tensor G (or the right Cauchy— Green elastic tensor) and on internal variables a E R", which has the

properties:

1)]7'sz c Sym+ x R" —>R, 97"(I‚a) < o for all a

ii) for all fixed a E prg ’D]:— the projection on the space of internal variables, the set

{G e Sym+ I flea) s o, (ea) e Dy}

is the closure of a non—empty, connected open set, i.e. if necessary we restrict the yield function to the

connected set that contains I E prl ’Df C Sym+;

iii) for all a E pr2(’D;.-) the set E Sym+ | J?(G, a) : 0} defines a 01 differential manifold, called the

current yield surface. Hence 6g?(G, a) 7€ 0 on the yield surface.

— The evolution equations for the plastic part of the deformation and for the internal variables, both

supposed to be rate independent, are represented by the form

PP“ = AB(G,a); a = Am(G,a) (4)

with the initial condition

P(0) z I, am) = 0
(5)

when the reference configuration is plastically undeformed and stress free.

The plastic multiplier A satisfies the requirements A 2 0 , A}? : 0, 5-: S 0, and the consistency condition

A]: 2 0. The superposed dot denotes material time derivative.
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— The pre—existing material symmetry is characterized by the symmetry group gk C Ort+— the proper

orthogonal group, which renders the material functions invariant (see Cleja— Tigoiu and Soös (1989))

h(QGQT‚ Qlal) = Qh(G‚a)QT‚ «7(QGQT7 QM) = 7:(G‚a) (6)

m(QGQT7 Z7 8(QGQT7 = QB(G3 a)QT

VQ E gk. Here we used the following notations for tensorial and scalar variables:

Q[a] : QaQT for a 6 Lin, Q[a] = a for a E R (7)

3 Evolution of the Irreversible Behaviour

Let us denote by Y 6 Lin x R the set of variables which characterize the irreversible behaviour of the

body, at the fixed material point, i.e.

Y::(P-1,a)‚ i.e. Y:(Y1,Y2), Y1:P_1,Y2:a (8)

Proposition 1. The evolution in time of Y is governed by the solutions of Cauchy problem:

 

Y=-7éy)<5va>ywcanfimann m

Y(0) : Y0

for a given strain history, Ö, t E [0,d] —> C(t) E Sym+, with

C = FTF (10)

and associated to the yield function

flay) z: f(P-TCP-1‚a) a flea) with Y ; (P-1,a) (11)

Here ß— the complementary plastic factor and 1— the hardening parameter ( supposed to be 7 > 0) are

defined for any C on the current yield surface .7:(C, Y) = 0 by

ß:%WQWT3‚v:&HQWWWX) (m

In the system (9) < ß >: ß if ß > 0 and < ß >: 0 if ß g 0. H denotes Heaviside function, i.e.

: 1 for all a: 2 0, H(:L') : 0 for all a: < 0, and the right hand side is defined by

y(C,Y) z: (P—13(P-TCP-1,a) ,—m(P—TCP-1‚a)) (13)

Remark 1. The appropriate form of the differential system, which defines the evolution of (P‘1‚a)‚ is

independent of the change of frame in the actual configuration, as it is derived in the reference configu—

ration, being dependent on the strain history Ö only.

We assume that the admissible strain histories Ö : [0, d] —) Sym+, are continuous and piecewise contin-

uously differentiable mappings over [0,d] ( i.e. C is well defined and continuous with possible exception

of a finite number of points, where it is right—continuous). Due to the fact that the evolution equations

are rate independent it follows that Ö can be considered on [0,1], only.

The differential system (9) must be broken into several systems, generated by continuously differentiable

restrictions of the strain process. The initial conditions are chosen to be just the final values reached in

the previous system. We assume that the constitutive functions satisfy the requirements of existence and

uniqueness of the solutions (see Cleja—Tigoiu, Part II (1990)). In our rate—independent system it can be

proved that no critical points of the system exist, i.e. there are no (t, Y) such that ß(t‚ Y) and (t, Y)

are simultaneously vanishing.

Remark 2. We denote by g, the set of all admissible strain histories, defined on [0, 1], having the current

values C(t) E C(t) E Sym+— symmetric and positive definite tensors and C(0) : I.

For all sufficiently smooth histories of deformation gradient F : [0, 1] —) Lz'n+ with F(0) : I, we associate

185



the admissible strain histories C e gs. Conversely, using the polar decomposition for invertible tensors,

for a given strain history C we construct the deformation gradient history F such that

W) = R(t>U(t)‚ U(t) e Sym+‚ U20) = C(t) (14)

and R(t) 6 071+, with R(0) = I. We denote by g the set of admissible histories of deformation gradient.

Let C E Q, and t 6 (0, We denote by C; the restriction of C to the interval [0, t], i.e. Ct(7-) z C(t7')

for all 7' 6 [0,1].

4 Elastic Range and Stress Functionals

For the models with relaxed configurations we define the elastic range L1(Ct) and the reduced elastic

range UR(Ct) at time t, corresponding to C 6 g, as

um z: {B e Sym+ I mam» s 0}, um» z: {A e Sym+ I imam) s 0} (15)

where Y(t) E (P(t)‘1,a(t)) represents the solution of (9), at time t, for the given strain history.

1. Based on (11) it follows that

UR(Öt) E {A E Sym+ | PT(t)AP(t) E U(Öt)} (16)

and conversely

“(Cd 3 {B E Sym+ | P_T(t)BP‘1(t) E MACH} (17)

2. The boundaries (9L! and 6UR(C,;) of the elastic ranges are given by

524 A E) := {B e Sym+ |?(~B,Y(t) = 0} (18)

ÖUR(Ct) == {A E Sym+ l f(A,a(t)) = 0}

Hence for instance B E 621(Ct) ä P_T(t)BP‘1 (t) E 6U72(Ct). The boundaries of the elastic

ranges define the current yield surfaces in the strain and in the elastic strain spaces, respectively.

3. The interior of the elastic ranges, i.e. I; z: {B | ?(B,Y(t)) < O} and ZflR z: {A l

f(A, a(t)) < 0}, are not empty since

A

I e 251R ((3,) and PT(t)P(t) e ü (ct) (19)

as a consequence of the stipulated property 7N: (I, a) < 0 for all a, and of (11).

4. For any given P“1 E Lin+‚ the map C E Sym+ —) P—TCP‘1 = GAE Sym+ is a homeomorphism

(i.e. the map and its inverse are continuous). Hence U(Ct) and 1173(Ct) have the same topological

properties, i.e. they are the closure of a non—empty, connected open set.

5. For the material characterized by the positive hardening parameter, 'y > 0, defined in (122, due to

the continuity of the yield function and of the solution Y of the differential system (9), the elastic ranges

evolve smoothly, i.e. for all C E g,, and for each B 62,? there is an e > 0 such that

Be fl 51(6).) <=> f(P-T(T)BP-1(T),a(r))<o VTE[t,t+e) (20)

TE[t,t+e)

In our approach to finite elasto—plasticity it can be proved:

Insensitivity of the plastic deformation and of the internal variables to elastic strain cycles.

Let C be in g, a continuously differentiable strain history and let A be in U(Ct) for a certain t E (0,1)
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Let H be in g, a strain process having the properties: there exist t0,t_ with t < to < t— < 1 such as

C(u) u e [0,t]

im» = e Wit) im) = fits), flee) = A, u e [til (21)

C(t—f+u) (with6>0) £<ug£+5

with 6 > 0 and f+ 6 g 1. We denote by YH the solution of the differential system (9) constructed via

the given strain history H. Thus

Y(u) u G [0,t]

YH(u) = Y(t) u e (m7 (22)

Y(t—t_+u) f<u§f+6

Insensitivity of plastic deformation and internal variables to elastic strain continuations. For

all C in gs: L1 (Ct) and UR(Ct) are invariant under elastic continuation of Ct, i.e. for all strain histories

H E 9,, such that there exists f e (0,1) and H; : C, (which means 11037) : Ö(t7')‚ VT 6 [0,1]) and

no) e me» for all T 6 [t1 1], then Mfr) 2 21(6),) and Meat) z wet).

We put into evidence three type of stress constitutive functionals which define the current values of the

appropriate stress measures, Cauchy stress tensor T, Piola—Kirchhoff stress tensors II and Hg, in the

plastically deformed (relaxed) configuration and in the initial configuration respectively . All of them are

generated by the elastic constitutive function (2), via the solution of the differential system (9), taking

into account the relation existing between these stress measure:

ITO—(t)p0 = F—1 %F—T = P—1 gp—T (23)

p0‚ ß, p are mass densities in initial, relaxed, and actual configurations.

We exemplify our results by the Theorem:

1. There exist the stress constitutive functionals K0, which give the current value of the Piola— Kirchhoff

stress tensor H0 corresponding to the strain history C e Es, being defined by

Ko(Ct) = Po P"1(t) h(P“T(t)C(t)P_1(t)‚ 0t(t)) P_T(t) (24)

where Y denotes the solution of the differential system (9), constructed via the strain history

Here P_T(t)C(t)P_1 (t) E G(t) is the elastic strain ( see (2)2 together with (1)), measured in the relaxed

configuration ( or plastically deformed configuration).

2. The stress functional K0 is frame invariant, since F E g and QF E Q, with 62- history of proper

orthogonal tensors, lead to the same strain history C.

3. The stress constitutive functional R9 is path independent on the elastic strain continuation of the

strain history C E 98, Le. for all A and B e gs elastic strain continuations of C at time t 6 [0,1), having

the same value at the time T > t (with 7- 5 1 ) A(7-) : B(7') E A0, i.e. A(u),B(u) E UR(Ct) for all

6 [75, 7'], then

K0(A,):KO(]§,), moreover K0(ÄT):poP‘1(t)h(A0‚a(t))P—T(t) (25)

5 Work Property on Small Strain Cycles

At a given material point X, the work done by internal forces in the deformation process described

by F E g between the instants t1 and t2, can be expressed in terms of the Cauchy stress tensor T as well

as in terms of the Piola— Kirchhoff stress tensor H0 in the reference configuration

t2T(T)_. _, s _i t2mm .

/t1 pm {FmF m} (17—, t1 To -C(T>dT <26)

 



 

or in terms of Piola-Kirchhoff stress tensor II via formula (23). The values at time 7' for the stress tensor

fields are calculated via the appropriate constitutive stress functionals, for instance introduced in (24),

corresponding to the history C E gs.

We introduce now the work property on small cycles of strains only;

Axiom of the dissipative nature of strain cycles. For all C E g. and 151,152 6 [0,1] such that

Oft} <t251and

Ö(t1):Ö(t2)€ fl mo.) (27)

ree[t1,t2]

the work done by internal forces in the strain processes between t1 and t2 is non— negative

1 t2 H0(’T) -

5 /t1 p—O - C(T)d7' Z 0 (28)

As a consequence of the property of the elastic range, written in (20) for t : t1, there is a t2 < t + e such

that the intersection in (27) is non—empty. Hence the postulate of non— negative work done by internal

forces is allowed for sufliciently small cycles of strains only.

6 Stress Potential and Dissipation Inequalities

Existence of the stress potential. 1. For all Ö E gs there exists a smooth scalar valued function

gZ(-, Ct) (for all t e [0,1]) defined over UR(C,;) such that

MG, Ct) = <p(G‚a(t>> and

 

29

W? = h(G, a(t)) = 2 Ögga(G‚a(t)). Here G = P_T(t)C(t)P‘1(t) ( l

and (P_1(t), a(t)) is the current value of the solution of (9), corresponding to the history

2. There exists a smooth scalar valued function a(c‚ Y(t)) defined over “((5,3) such that

0(C(t)‚Y(t)) = 80(P—TC(t)P“1‚a(t)) (30)

and for all F 6 Q associated to Öt by the procedure mentioned in Remark 2.,

T t H

% = 2 F(t) öca(C(t)‚Y(t))FT (t) <=> 2“) = 2 öca(C(t)‚Y(t)) (31)
0

3. The stress potentials (‚0 and a are invariant under a change of the observer in the actual configuration

as well as under the symmetry group gk.

Examples for stress potentials similar to the specific free energy function generally accepted in the

finite elasto—plasticity, for isothermic process are given in the special form

@(G, a) = WAG) + <pb(a) (32)

Here (‚0€ is the specific potential for the Piola— Kirchhoff symmetric stress tensor in the relaxed configura—

tion and (‚ab is the stored potential. The form (32) is justified only when there is no influence of internal

variables on the elastic property of the material, i.e. when the elastic function h from (2) (see also (29))

is independent of a. Some particular case of (32) arises when we and (p1, are quadratic forms with respect

to their tensorial variables.

Under the hypothesis (32), for structural isotropic elasto-plastic materials defined by gk = 071+,

we derive

2<p(G, a, N) = Ä2—E(I - A)2 + „CA - A + a1(rc)(a - I)2 + a2(l<z)a - a + (‚0009) (33)

1

where A : §(G — I), AG and ‚ue are the (constant) Lame elastic coefficients. Here the set of internal
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variables is denoted by (04,16) in order to distinguish between scalar, K), and tensorial, (1, variables.

When we refer to transversely isotropic materials, two symmetry groups 91 and 94, which preserve a

symmetry direction n1 (see Shih— Liu (1983), are accepted in our models. Based on the recent results

formulated in Cleja— Tigoiu (1999), we can prove that

1. For both symmetry groups 91 and 94 the same representation for gas

2 (MG) :2 a(An1 «11)? + 2btr(A)(Anl ~n1) + fA - A + d(tr m2 + 2 e(An1 «11)? (34)

holds. Here a, b, d, e, f are (constant) elastic coefi‘icients.

2. The stored potential, depending on a, possibly a non—symmetric tensor, can be expressed by

gob(a) E 171(ozs - (n1 (8 n1))2 + b2(ozs)2 - (n1 ® m) + 193((13)2 -N¥+

+b4(as - I)(as - (n1 69 n1)) + b5(as -I)2 + böasa“ - N1 + b7aaNä -as+ (35)

+b8(a“ - N1)(as - (n1 ® n1)) + b9(a“)2 - (n1 (8 n1) + b10(a“ - N1)2

where N1 is the skew—symmetric tensor coaxial with n1, for g1 transversely isotropic materials with ten

material functions, and with eight scalar material functions, depending on the scalar internal variables,

for g4— transversely isotropic materials by

gpb(a) :2 a1(a‘ - (n1 ® n1))2 + a2 (01”)2 - (n1 (8) n1) + astr(oz‘")2 + a4(tras)(as - (n1 ® n1))+ (36)

+a5(trcvs)2 + (1.5tr(a“)2 + (17(oz“)2 - (n1 ® n1) + astr(as(n1 ® n1)a”‘).

Dissipation inequalities. Let Ö be in 9,. For all t E (0,1) such that C(t) E 671(Öt), the work property

(28) implies for all A E U(Ct), the following equivalent dissipation inequalities

[aYcT<A(t>,Y(t>> — aYa(0(t).Y<t>>i - Ya) 2 o and

2 [G(t)ÖG90(G(t)‚ a(15)) - G*(t)öG90(G*(t)‚ 0(0)] '15(t)P_1(t)+ (37)

+[3a<P(G*(t)‚a(t)) - Öaso(G(t)‚a(t))] 'CW) 2 0

where G(t) and G*(t) are defined as in (29);,» and G*(t) : P_T(t)AP‘1(t). Let us introduce Mandel’s

stress measure 22 in the relaxed configuration, generally a non—symmetric tensor field, which is defined

by the function E(-‚a) : Sym+ —-—> Lin, when the elastic constitutive equation (2) (or (29)) is taken into

account :

2 z: Gl'I/‚ö E Gh(G, a) a 2 Göch(G,a) a im, a) (38)

Proposition 2. Let Ö be in 9,. For all t E (0, 1) such that the associated elastic strain G(t) E 6UR(Öt)‚ the

work property (28) under the consequence (37)2 implies, for all G" E UR(Ct), the following dissipation

inequality

(EU) - E") TWP—105) + (3(t) - 3*) 'd(t) 2 0 (39)

when the conjugated forces to the internal variables (see Halphen and Nguyen (1975) ) are considered

a(t) == -3a90(G(t)‚a(t))‚ a* = -3a90(G*‚01(t)) (40)

Here E(t)‚ 2* are given in (38), being calculated for the elastic strains G(t) and G*.

When the potential (I is considered, the dissipation inequality (37)2 can be written in the following form
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For all t 6 (0,1) such that ?(C(t), Y(t)) : 0 the following dissipation inequality

4: d -

2[3p—10(C ‚Y(t)) - öp—IU(C(t)‚Y(t))] - $(P 1)+ (41)

+[ÖaU(C*‚Y(t)) - öa0(C(t)7Y(t))] 'Öt(t) Z 0,

holds for all C" such that ?(C*, Y(t)) g 0, whereAY(t) = (P‘1(t), a(t)).

Let us consider the pseudo—potential of dissipation ’Dp, given in Cleja— Tigoiu and Maugin (2000), formulae

(9) and (14), but mentioning explicitly its dependence on G and or, i.e.

75,,(Lp, a; G, a) z: 2Gögm(G‚a) .1'3P-1 — Bag/KG, a) a (42)

where L1,, = PP_1. Consequently (37) becomes the principle of maximum dissipation

ÖP(LP: d; G7 a) — ZSPCLP: a; G*aa) S 0

whenever .7?(G,a) = 0, for all G* such that .7?(G*,a) g 0.

7 Flow Rules

Further we emphasize some implications derived from the dissipation inequalities.

A modified flow rule can be derived from the dissipation inequality (39)

(3G3(G7 a))TlPP_ll = WGTWG, 0) + 6: GMG, and] (44)

where ‚u Z 0, for all G on yield surface 7?(C, Y) : 0. The equivalent inequality (41) leads to

—ay[6c:a(c, Y)][Y] = nöcficx) p 2 o, (45)

for all C on the yield surface 7—”(C, Y) = 0, for fixed Y.

For structurally isotropic materials, i.e. g], = 071+, due to the invariance property 3. the stress potential

(,0 allows the representation

<p(G, a) 2 90(36, a) , B6 = ReG(Re)T, a 2 Rep] (46)

Be and G are the right and left Cauchy—Green elastic tensors, and R6 E 071+, V6 E Sym+ (with

B6 : (V5)2) such that

E z VeRe, F : veP with 15 : RT. (47)

When (32) holds we derive 82G <p(G, a) = 0 <=> 0:3.. g0(Be,a) = 0 , and consequently the elastic

constitutive equation (31) in terms of T— Cauchy stress tensor is written in the form

ä = 2 Ve (913.4P(Be‚a)ve ;= f(Be) (48)

We stipulate that f is one to one on Sym+, a diffeomorphism of the class C1.
A

Definition 2. Let F be in g. For all t 6 (0,1), the elastic range in the stress space (in the actual

configuration), associated to the reduced elastic range, 1173(6)» introduced in (15), is defined by

[C := {S e Sym l .7:(S,a(t)) g 0} where J-"(S,a(t)) z: .7?(B,a(t)), B : f—1(S). (49)

A T
Drucker’s postulate. Let F be in g. For all t 6 (0,1) such that T(%,a(t)) : 0, the dissipation

p
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inequality (39) becomes

(3 — S) . {%(P)f»-1}S 2 0 v s such that f(S,a(t)) g o
p

(50)

%(fi)P-1 = w + RCPP‘1(R8)T Where the = Renae?

under the hypotheses formulated in (32) and with the smooth elastic constitutive function f invertible.

Consequences. Drucker’s postulate holds if and only if the following conditions hold a) At the point

S : —T— of the stress yield surface, {%(15)15‘—1}s is either null or collinear with the unit exterior normal

p

of the stress yield surface at the given point, i.e.

{gram—1r = Mas Häa) (51>

b) The elastic range in stress space introduced in Definition 2. is a closed convex set in Sym, for every

given internal variable a.

Finally we consider an anisotropic elasto—plastic material without influence of the hardening on the elastic

constitutive function, i.e. when (11)1 holds, and with the yield function in the strain—space defined by

f(G‚a) = 7:12.00, 2 = $(G> (52)

The material satisfies the dissipation inequality (39) if for every accessible state, G*, the following in—

equality

(me) - S:(G*)) -PP-1 2 o, VG* such that fi(:(G*),a) g o (53)

holds.

2. Moreover, at any regular point of the yield function in strain space, the appropriate associative flow

rule (referred as Lubliner’s flow rule) takes the form

LP a PP—1 = #6271200 + LP“ with L“ : (6G2(G))T(LP*) = 0 (54)

where 6G:(G) : Sym —> Lin is a linear mapping, obtained by the chain rule from (38), and p is the

loading parameter or plastic multiplier.

3. .7:w and L1”k are invariant relative to the considered symmetry group 9],.

8 Conclusions

The existence of the stress potential imposes a strong reduction to the number of elastic constants, as

it can be seen from our examples. Indeed, transversely isotropic elasto—plastic materials with a linear

elastic constitutive equation depending on eight constants for 91 and on six constants for 94 (see Cleja—

Tigoiu (2000)) do not satisfy the dissipation postulate.

The dissipation inequality (41) is the equivalent form of the restriction on the strain energy function

derived in Casey and Tseng (1984) to our approach to finite elasto—plasticity. Inequalities similar to

(53) appear in Lubliner (1986), (1990), in Marigo (1989) (where E is dependent on the elastic part E

and not on the elastic strain tensor), in Krawietz (1981)(whe’re E E Sym, which is not true generally

as it can be seen from our example relative to 514— transversely isotropic material). In Srinivasa (1997)

an inequality equivalent to (39) is derived, with an other interpretation for the appropriate variable 2

element in Lin x R.

Our result in (54) is similar to Lubliner’s result, but here we emphasized that the nine dimensional

Mandel’s flow rule defines the rate of the plastic deformation only up to a term which belongs to the

kernel of a fourth order tensor with a precise physical meaning.

The dissipation inequality has been reformulated as a maximum dissipation postulate. This interpretation

appears possible, when the free energy density (that is a potential for the stress, as a consequence of

Clausius- Duhem thermodynamic restriction) is identified with the stress potential (p.
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As it was proved in section 7, Il’yushin’s postulate is less restrictive than Drucker’s postulate, which is

generally identified in finite elasto—plasticity with certain dissipation inequalities proved in an appropriate

stress space. The problem which arises is to find these classes of elasto—plastic materials, allowing for stress

potential, for which the dissipation postulate is a possible alternative characterization of the properties

of convexity and normality alltogether.
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