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On Parametrically Excited Flexural Motion of

an Extensible and Shearable Rod with a Heavy Attachment

S.J. Cull, R.W. Tucker, R.S. Tung, D.H. Hartley

A simple Cosserat model is used to explore the coupled planar flemural and arial vibrations of a slender

rod clamped at one end with a heauy attached mass free to move at the other. By assuming that the

inertia of the rod is small compared to that of the attached mass it is shown how the equations of motion

reduce to a dynamical system. The effects of grauity on the rod can be incorporated within this frame—

work and the linearised stability of the system discussed in terms of solutions to the Mathieu—Hill equation.

1 Introduction

The analysis of slender elastic structures under external forces and torques remains an active area of

study. Although simplified models may capture aspects of axial, lateral or torsional linearised instabilities

a unified model is necessary to properly appreciate the rich dynamical interactions between these modes

and the non-linearities that inevitably limit the applicability of the simplest models. In this paper we

explore the linear stability of small axial and lateral excitations of an extensible, shearable rod, clamped

at one end with a heavy attachment at the other, using methods adopted in Tucker et al. (1999).

A rod is modelled in terms of space—curve with structure. This structure defines the relative orientation

of neighbouring cross-sections along the rod. Specifying a unit vector (which may be identified with

the normal to each cross—section) at each point along the line of centroids enables the state of flexure

to be related to the angle between this vector and the tangent to the space-curve. Specifying a second

vector orthogonal to the first vector (thereby placing it in the plane of the cross~section) can be used to

encode the state of bending and twist along the rod. Thus a field of two mutually orthogonal unit vectors

{d1(o, n), d2(o, 77)} along the rod provides three continuous dynamical degrees of freedom that, together

with the continuous three degrees of freedom describing a space—curve relative to some arbitrary origin

in space, define a simple Cosserat rod model.

In Tucker and Wang (1999b) it has been shown how a drill-string in a typical oil or gas rig may be

described in terms of such a model. Supplemented with appropriate constitutive relations and boundary

conditions the model can fully accommodate the modes of vibration that are traditionally associated

with the motion of drill-strings in the engineering literature: namely axial motion along the length

of the drill—string, torsional or rotational motion and transverse or lateral motion (Dunayevsky et al.,

1993; Fear and Abbassian, 1994). This model is well suited to study numerical simulations that offer

valuable guidance on the detection and control of destructive vibrational configurations (Tucker and

Wang, 1999a). One of the drawbacks, however, of a direct numerical simulation of such a 3D model is the

extensive computational time required to gain significant insights into the structure of the control space

that determines the stability of the system. This can be particularly acute when, due to non—linearities in

the equations of motion or (moving) boundary conditions, the evolution of the system becomes sensitive

to initial conditions and parametric variations.

Novel approximations of the governing non-linear partial differential equations offer a means to explore the

relevance of different parameter domains on the evolution of a direct numerical simulation. Even though

recourse to further numerical analysis may be required the insights gained from such approximations

prove invaluable when establishing initial conditions and parameter domains for a full 3D simulation.

One may then investigate the limits of validity of an approximate solution. Within such limits such

solutions offer an efficient computation scheme by comparison with a full numerical simulation and their

analytic implications provide a useful complement to a purely computational understanding of such a

complex phenomenon.

Inspired by Antman et a1. (1998) a study of the dynamics of large amplitude fiexural motion in the

context of extensible and shearable drill—strings under gravity has begun, with a view to controlling the
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onset of “snap—buckling” (Tucker et al., 1999). Antman et al. (1998) have provided general conditions

on initial data that permit a certain approximation scheme for a simple Cosserat system to generate

a solution that can move irregularly through a family of equilibrium states parametrised by time. In

Tucker et a1. (1999) we have shown that approximations in which the pde system is reduced to a non-

linear ode system provide a useful guide to the behaviour of large flexural vibrations. By contrast in

this paper attention is directed to the linearised stability of axial and planar flexural excitations of small

amplitude. New approximation schemes are compared with direct numerical computations using the

method of mapping at a period (Arnold, 1989) and for the first time within this context applied to the

parametric amplification of extensible, shearable rods with weight.

Although this work has been motivated by the dynamics of drill strings it has implications for other

systems. The analysis of recent precision experiments (Quinn et al., 1992; Speake et al., 1999) to measure

the Newtonian gravitational coupling constant G using the motion of a compound pendulum suspended

from alloy flexure strips needs to accommodate (low frequency) elastodynamic behaviour. With suitable

modifications to boundary and damping conditions the results discussed below have relevance to such a

system and should ofier an important method to enhance the precision of such measurements.

2 The Simple Cosserat Model

In this section the basic equations of the simple Cosserat theory for a slender rod of unstressed length

L0 metres are briefly summarised and the dimensionless equations of motion and boundary conditions

that are subsequently discussed are derived. Elements of the rod are labelled in terms of the Lagrangian

coordinate 0 g s 5 L0 at time t.

In terms of external force f and torque l densities the dimensionless equations of motion (Antman, 1991;

Tucker and Wang, 1999b) for the rod are (with d3 : (11 x d; and k- : 1,2,3):

fun, 77) = III/(0777) - 9k + flaw) (1)

((PI)(W(U‚77)))n = m’(0‚"7) + Hal/(0777) X 1107771)) +1(Ufl7) (2)

die/(0777) = “(0777) >< (Mann) (3)

die-(U771) = WWW) >< dk(0': 77) (4)

RAIN?) = VON?) (5)

where a = s/LO, R : önR, R’ = 87R etc., a is the dimensionless constant (EA)(U)L3p0/(G(i11 + f22))

in terms of Young’s modulus E for the rod, A(a) its cross—sectional area, p0 its uniform density and G

its shear modulus. The weight of the rod (extracted from the body force density f) is encoded into the

dimensionless parameter g = gpoLo /E where g is the acceleration due to gravity and the evolution of the

system is given in terms of time t by the dimensionless variable n : ct/Lo where c : 1/E/p0. The vector

W(U‚n) = w1(0‚n)d1(0‚77)+w2(0‚n)d2(0‚n)+11J3(0‚77)d3(0‚77) (6)

denotes the local angular velocity of the rod . The dimensionless contact force n(a,17) and torque m(a, 17)

vectors

new) ’rb1(0777)d1(0‚77) + n2(0377)dz(02 n) + n3(0» mdgw. 7?) (7)

111(0777) = m1(UaU)d1(U/U) + 7712077 7961207777) +m3(0fl7)d3(0:77) (8)

are related to the dimensionless strain vectors v(a,77) and u(a,77)

V0777?) = 01(0777)d1(0777)+U2(0777)d2(0777)+’U3(07’U)d3(0777) (9)

“(0777) = U1(0777)d1(‘7»72)+’U2(Ufl7)d2(0fl7)+U3(U,’U)d3(0fl7) (10)

by the the classical Kirchofi constitutive relations:

11(0717) = Xv(0‚n) + ((1 — 901130277) — 1)d3(0‚n) (11)
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mm) = gum) +<1— %)us(0,n)d3(mn) (12)

where the dimensionless parameter X = G/E is expressed in terms of the ratio of shear to (Young’s)

modulus of elasticity, and ß = GUM + [Lg/(E111), is defined by a set of reduced (dimensionless) inertia

components of the rod. The fij are the components of the rod “inertia tensor”, (pi), with respect to the

local director frame {dj}. For a cylindrical rod with an annular cross section, outer radius To and inner

radius 7‘] the non zero components of im" are

13112132 2 7TP0(T4O ‘Tf)/4

1:33 = W000?) — TAD/2

The triad {i,j,k} will denote a right—handed global orthonormal basis for vectors in space, oriented so

that k points vertically upwards and the upper end of the rod is attached to the origin of this basis. At

0' : 0 the variables R, w satisfy the equation of motion of a rigid body with heavy effective reduced mass

no and effective reduced inertia J0 (97),

HORN?) = 11007) - #09k + foO?) 34-10(77) 'Wo(77)] = 11107779007) +1007) (13)

where R007) 2 R(0,n),n0(n) = n(0,n),m0(n) : m(0,77),w0(77) z W(0,n). Similarly at 0' : 1, these

variables satisfy the equation of motion of a rigid body with heavy effective reduced mass m and effective

reduced inertia J1 (17):

M13107) = -n1(77) - mgk + f1(77) an[J1("/) "W1 (71)] = -II1(0‚TI)1(TI) + 11 (77) (14)

where R1 = R(1,7}),n1(n) z n(1,77),m1 (n) = m(1,17),w1(77) = w(1,77). We further consider planar

flexural modes with (f = l = 0, f1 = 0 : l1) and an approximation where the left—hand sides of equations

(1) and (2) may be neglected at all time compared with the forces and torques on the right—hand sides.

This approximation (Antman et al., 1998; Tucker et al., 1999) implies that the dynamical motion at

an end of the rod dominates the forces and torques that drive the system. Under these circumstances

equation (1) may be readily integrated with respect to a

10(0777): 9(0 —1)k+n1(77) =90k+no(77) (15)

while equation (2) becomes

m’(0‚77) = ‘fiR/(Ufl?) >< 1107,77) (16)

As in Tucker et al. (1999) the special case X = 1 is explored:

10(0777) = WW7) — dawn?) mm) = äub’m) + (1 ~ ä)uad3(0‚n) (17)

With these constitutive relations the rod can undergo extension and shear. It follows that

R’(U‚ v7) = n1(n)+ 9(0 — 1)k + d3(0‚ 77) (18)

15111110717) = -R’(U‚n) >< Mam) = 101(77) >< damn) + 9(0 — 1)k >< damn) (19)

(1307,77) = 11(0777) >< damn) = ßmwm) >< d3(0‚n) (20)

d’1(0‚n) = 1107,77) >< d1 (U, 77) = ßmwm) >< d1(0‚n) + (1 — ß)mzd3(a‚n) >< dime) (21)

(Maß?) = 11(0777) >< d2(0777) = fimwm) >< (120m) + (1 — ß)m3d3(a‚n) >< (12(0) 77) (22)
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We consider solutions of the form:

RUM) = X(U‚n)i + Z(U‚n)k

d1(0,77) 2 — cos 9(0, 17)i + sin 0(0, 77)k (23)

d2 (U7 :j

d3(a,77) 2 — sin9(a, 77)i — cos 6(0, 77)k

It follows from equation (16) that:

W(U‚n) = 901, 77)j

1107,77) = 9’(U‚n)j (24)

“107777): swam

“1(71) Z n1m(77)i+n1z(77)k

Introduce new variables A(77),y(77) in place of ’n1m(77),n12(77) by writing

111(0) = ~(flf9)_1A(n)2(Sin 7(77)i + COS 7(77)k) (25)

(without loss of generality, and set A(77) 2 0 and —7r 3 y(77) g 71'). In the following section a cylindrical

rod with an annular cross section is chosen so that ß 2 2 with X 2 1. By differentiating m(a, 77) 2 ää’j

with respect to a and equating it to equation (16) 6(0717) is found to satisfy

Man) 2 — 2K[n1z(n)sin9(0‚n) — mm) COSWCH 77)] - 2&907 — 1) 911190277)

2 . . (26)

=A(n) sm(9(0‚ 17) - 7(77)) - 2'990? - 1) smäm 77)

A light rod is defined by setting g 2 0. With this further simplification one integrates equation (18) using

equations (23) to get

R(U,77) 2 R0(77) — (2H)_1UA(77)2(81117(77)1+ cos ry(77)k) — /0(7 da’(sin9(0’‚77)i + COS 0(0',77)k) (27)

The rod is assumed clamped at the origin (a 2 0) with R(0,77) 2 0, d1(0,77) 2 —i, d2(0,77) 2 j, d3(0,77) 2

—k‚ and the attached mass at a 2 1 has zero rotary inertia, J1(77) 2 0. It follows from equations (23)

that 60(77) 2 0 while equations (14) and (24) imply 61 (77) 2 0. Thus together with equation (26) the

boundary value problem is

9"(0777) - 1407)? S111(907, 77) - 7(77)) = 0 (28)

(9007) = 0 9107) Z 0 (29)

3 Flexural Excitations with X 2 1 and g 2 0

Restricting attention to small flexural excitations with 6 << 17 equation (28) becomes:

9"(U, 77) - (x407)2 COS 7(77))9(U‚ 77) = -A(77)2 sin 7’07) (30)

The solution for 607,77) satisfying the above boundary conditions, using Green’s function methods de-

scribed e.g. in Collatz (1986), is

A 2 '

0(a,17) 2 ——W (1 — tan B(77) sin(B(77)a') — cos(B(77)a)) (31)
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Where the complex variable B (n) 2 14(7)) 1/— cos 7(a). From equation (27)

Rum) = -(2K)‘1A(n)2(sin7(n)i+cosv(n)k)-/ da'<sine<a'‚n>i+cose(a'‚n>k> <32)
0

: X1(77)i+Z1(77)k (33)

so with (9 << 1 in the integrand above, we have

   

1 U, U, __A(n)2sinv(n) _tan(B(n)) 34

(o d (X )’ Be)? (1 Be) > ( )

and since

im 1 _tan(B(n)) :_1
35

$43307)? (1 Be) > 3 ( l

_ l . A(n)zsinv(n) tan(B(n))
X107) = —<2n>1A<n>2sm<n>+ ‚3W (1— 3W ) <36)

Z107) : -(2K)_1A(n)gcow(n)—1 (37)

The evolution equation

MR1 (n) = —n1(77) = (2K)‘1A(n)2(sin WDi + cosv(n)k) (38)

can then be expressed in terms of X107) and Z107):

when) = -X1(77) <39)

M12107) : —1—Z1(77) (40)

where, from equation (37), 8(77) : x/ 2m/ 1 + Z107) . The general solution of equation (40), with initial

values 21(0) and Z1(0), is

    

21m) = —1 + (21(0) + 1) cos(\/Z_1) + m21(0)sin(\/”:Tl) (41)

From equations (37) and (41) B(77)‘2 is determined by these initial conditions Z1(7}), 21(77):

l _ n - . n
B(„])2 __ 2n [(1 + Z1(O)> cos(\/H_1) + (Au—121(0) s1n(\/H_1) (42)

: 25H cos(7n_/Z + To)
(43)

 

where H = \/(1 + 21(0))2 + m (21(0))2 and

tan To = — ‚111%
(44)

Equation (39) may describe parametric excitations via the periodic function B(77) = B(77 + 27r\/n—1).

Since the dynamics of B(n) is determined by the extensible motion Z107) there exists the possibility of

auto—parametric excitation and internal resonance in the system. The parametric “stiffness” in equation

(40) can become unbounded as B(n) approaches 7r /2 from below and it is difficult to solve this equation
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analytically. Given the possibility of unbounded solutions its behaviour for KH << 1 is explored, since

from equation (43) one may then use the approximation |B(n)2[ << 1. For the special initial values

Z1(0) : 1, Z1(0) = 0, one has B(77) = 0 and equation (39) reduces to

.. 1 2 ‘1

X1(’7)+E(1+gfi) X1(77)=0 (45)

with oscillatory solutions. With general initial conditions for the Z107) motion but ItH << 1

  

(1 ’ ’ wg??? -1 K (46)

2 (1 + 3-5) — (1 + gn) Emmy + 0(B4) (47)

: (1+ $194 — (1+ git) _2 1-83K2Hcos(\/Z_1 +To)+O(B4) (48)

Equation (39) may be approximated by the Mathieu—Hill equation

 

X()+ 1(1+2)_1 (1+2>—28”2Hos(" +7) X() o (49)— —/e — ——K — c ’ 2

”7 m 3 3 15M1 m 0 1"

With T 2 7% + To the equation can be written in standard form:

d2 A A
_ _ Z 50dT2X+[a bcosT]X 0 ( )

where

X107) = X1(—\/Z—1+TO) (51)

2 —1

a I <1 + 5K?) (52)

2 _2 8H22 _
5b <1 + 3K?) 15 H ( 3)

Equation (50) exhibits unbounded oscillations for certain values of a and b. The stability domains follow

from a standard analysis of the Mathieu—Hill equation (Newland, 1989) and are displayed in Figure 1,

where the stable regions are shaded. Since b > 0, 0 < a < 17 there exist domains of unstable flexural

motion in this limit. One such region is bounded by the curve labelled “approximate” in Figure 2 in

terms of It and H where

  

n = gel)

H 2 “(a—bu?) (55)

Since

|B<n>2I = 2m/(1 + 21(0))2 + m (21(0))2 IcosTl =M IcosTl (56>

stability criteria based on parameters having; values that lie in the region below the hyperbola K‘H = 1/2

and above the a axis in Figure 2 are consistent with the small |B(n)2| approximation. Parameters that

lie in the domain between the curves that intersect on the Art—axis at it : 4.5 gives rise to unstable motion

for any value of H determined by the initial values of Z1 and 2107) with 3(7)) 9€ O.
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Figure 1: Mathieu—Hill stability diagram showing shaded stable regions in the (1—1) plane associated with

equation (50).

One may solve equation (39) numerically without recourse to the small RH approximation. The motion

R(a,n) of the rod in space is then determined from the relations:

_ n U um) UB(77)CosB(n)-sinB(n)+sin((1-U)B(n))

XW’) " W7) +nz(n>( B<n>cos<B<n>> )

ZULU) = Z1(n)a (58)

(57)

where nun) : ~mX1(17), 712(7)) : —,u121(n) : 21(7)) + 1. The curve labelled “direct” in Figure ‘2

shows the result of the stability analysis performed by direct numerical computation using the method of

mapping at a period (Arnold, 1989) without the small [CH approximation Below the hyperbola agreement

is good.

4 Flexural Excitations with X = 1 and g # 0

In the previous section the weight of the rod has been neglected. In this section the effect of the

rod’s weight on the excitation of small flexural excitations is explored. By differentiating the equation

m(a,n) 2 äö’ j in section (2) with respect to a, and equating it to equation (16) yields

9”(U‚n) = -ßli([9(0 - 1) + 711477)] sin9(0‚n) - n1z(n)0059(0‚n)) (59)

With 9 = O this equation subject to the boundary conditions (29) has been analysed in terms of elliptic

integrals (Tucker et al., 1999). T0 progress when g gé 0 assume small flexural deflections and write the

above equation

WM) + fifilyw — 1) + n1z(77)]<9(0‚n) = filmmtn) (60)

subject to the boundary conditions (29). Linearly independent solutions to the homogeneous equation

are

91(0377) = Aim/(0,79) 0207377) = 1310140777» (61)

where Ai and Bi are the Airy A and Airy B functions and

 

WW) = (zum (-a + 1 — ”130”) (62>
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Figure 2: Stability diagram showing the stable regions in the rc—H plane associated with equation

The hyperbolic line is aH : 1/2, with the region RH < 1/2 corresponding to 1B2) < 1. The curve

labelled “direct” shows the result of direct numerical calculations with equation (39) while the curve

labelled “approximate” corresponds to the Mathieu—Hill equation (50).

Using linear combinations of the solutions (61) one may write down the solution 6L(a, 97) of the homoge—

neous equation satisfying the boundary condition 60 : 0, and similarly the solution 93(0, 77) satisfying

the boundary condition (91 (n) : 0:

mam) 2 — Amen» + B10140: 0)

Mom) = — Amman» + BMW»

where

A1(1‚a) _ %Ai(a)

1310,17)- £13107)

The Wronskian of the functions (9L and HR is a constant in a

Tr—l
W901) Z ((3/69)? (A1 011(0),?» _ Ai(17 \If(1‚77))

The solution to equation (60) satisfying the boundary conditions (29) is:

60,77) 2 (mam) / man) d: + 6mm amen) d6)

With X : 1, one integrates equation (18) using equation (23) to get

X0277) = awn) — fawn) d6

2m) 2 gw — 2a) + mm — a

At a = 1 the force boundary condition in equations (14) with f1 2 0 gives

MiXi Z -’n1z(77)
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#12100) = -n1z(n) - mg

and substituting 0' = 1 in equation (70) gives

_ 9

711207) — Z107) + 5 + 1

Substituting the above into equation (72) yields

M12107): —1 — (m + g— Z107)

which, with the initial values Z1(0) and 21(0), gives the solution

 

Z107) = —1~<H1+%>y+\/;T121(0)sin< ’7 >

 

W71

+ (21(0) + 1 + (m + g) cos

With

(9m) =

and 0' : 1 in equation (69):

X107) 2 HIN?) [1 — /01Ö(U‚n) da}

Hence equation (71) becomes

—1

MW) = [1 am) da ~1) X107)

With e = 559 << 1 a series expansion of 6, from equations (76) and (68) is

A 1 1 1 1., 1 1,

607777) : äßK/Uz *‚ßf’QU-Fßli [g0 — —g"’ + _0-4 _ _0.u

 

6 8 40

1 1 3 1 4 H1207)
(30—60 +240) g e

to first order in e. It follows that

1 “"1 imam; _ _1_

|:/ é<a7n) dU - = ... 11 + 15 5/ 1 “bl/BEE

0 (1 + gßn) (1+ gmz

 

to this order. Substituting 21(77) in equation (73) gives

  

A 77 A
nznz— +Hc0s( +7)1() #19 m 0

where

A 1 2 ‚

H: <1+Z1(0)+<M1+§)g) +mZ1(0)2

Z
tanfl]:_ m

1+Z1(0)+(u1+%)g
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Figure 3: Stability diagram showing stable and unstable regions in the rt—H plane associated with equation

(84) for ß = 2, m 2 1, and g = 0.01.

Using equation (81) equation (78) is to first order in 6 a form of the Mathieu—Hill equation. With

X101) : X1 (T) and T : 7% + 7‘0, it can be expressed in the standard form:

2210“) + [a —8cos:f]x1(r) = 0
(84)

with

1 ‘1 1 “2 1 2 seeg
A Z _ . 1 _ fl _ _ — 85a (1+3ßn> +( +3ßn> (8+5m) 3 ( )

A 1 ‘2 MW A
: 1 — r —H 86b ( + 3m») 15 ( )

As before equation (84) exhibits instabilities for certain values of ä and The stability domains follow

from Figure 1, with a and b replaced by ä and 13 respectively. We plot these stability domains in the m—H

plane, with ß : 2, ‚ul : 1, and g : 0.01, in figure 3.

5 Conclusions

A simple Cosserat model has been used to explore the coupled axial and planar flexural excitations of a

rod clamped at one end with a heavy attached mass free to move at the other. The rod exhibits both

extension and shear and a series of approximations permit the motion of small planar bending oscillations

in the presence of axial vibrations to be determined by a system of ordinary differential equations. For

both light and massive rods the dynamical evolution of the system can be reduced to a study of solutions of

the Mathieu-Hill equation. A stability analysis for a light rod based on this equation has been performed

and its effectiveness compared with a direct numerical analysis based on period mapping techniques. The

method based on the Matheiu—Hill approximation has been extended to the case of a heavy rod where a

direct numerical analysis is more computationally intensive.
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