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On the Extended Notion of Material Homogeneity

M. Epstein

The theory of continuous distributions of inhomogeneities is shown to be applicable beyond its original

context, to certain classes of material bodies that are not necessarily uniform.

1 Introduction

The mathematical theory of continuous distributions of inhomogeneities is one of the great, if not widely

known, achievements of modern continuum mechanics. At its foundation lies the notion of a constitutively

induced material geometry, expressed in terms of a reduction of the principal bundle of frames of the body

to a sub—bundle governed by the material symmetry group. The emergence of this geometrical apparatus,

however, is based on the assumption that the body points are pairwise materially isomorphic or, in other

words, that the mechanical responses of all the body points are essentially the same. This uniformity

assumption, which is thus a precondition for the very definition of the inhomogeneities, is violated by

an increasingly important class of artificial materials arising in many technological applications: the so—

called functionally graded materials (Suresh and Mortensen, 1998; Yamanouchi et al., 1990), which are

manufactured so as to have smoothly varying elastic properties.

Motivated, on the one hand, by this particular application and, on the other hand, by the natural curiosity

of exploring the range of applicability of any well formulated theory, this note presents a preview of

the methodology that may be used to achieve a generalization of the theory of inhomogeneities. In a

companion paper (Epstein and de Leon, 2000), further aspects of the theory are discussed, while this

presentation emphasizes the underlying structural fabric of the theory.

2 The Mathematical Backbone

Given an n-dimensional differentiable manifold, such as a material body 3, there exist several canonically

defined structures that can be considered. Three of them in particular are of interest for the theory of

inhomogeneities in continuous media: the tangent bundle T8, the principal bundle of linear frames 7-"B,

and the Lie groupoid of linear isomorphisms HB. These three structures are mutually related, and are

all characterized by the same structural group, namely, the general linear group GL(n,R). The essence

of the theory of inhomogeneities within the context of continuum mechanics is the reduction of these

canonical structures to counterparts which are characterized by a proper subgroup of the general linear

group. This concept can be best explained in terms of the groupoid HB.

The groupoid HB of linear isomorphisms of ß is the collection of all non—singular linear maps between

the tangent spaces of all ordered pairs of points (X, Y) of [3. Thus, a typical element z 6 HB has

two natural projections, pr1 : IIB —> B and prg : HB —-> [3, providing, respectively, the source point,

X : prl (z), and the target, Y = pr2(z), such that z represents a linear map between their tangent

spaces: 2 : TXB ——> TyB. Taking any atlas of B, and expressing these linear maps in terms of their

matrix components in the natural bases thereof, it is not difficult to see that HB is a fibre bundle over

the product manifold B x B.

As already pointed out, the groupoid HB is canonically defined and bears, therefore, no information

about the mechanical response of the body on which it is based. Assume now, however, that the body

is materially uniform (N011, 1967) or, in plain language, that it is made of the same material at all of its

points. In particular, if the body is made of a first grade elastic material with constitutive equation:

1: z t(F, X)
(1)

where t is the Cauchy stress tensor and F the deformation gradient at the body point X, uniformity
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means that for every pair of points X, Y e B there exists an isomorphism

PXY I TxB —) TyB (2)

such that

t(Fny, X) = t(F,Y) (3)

for all non—singular F.

These material isomorphisms PXy constitute the essential ingredient of the theory of inhomogeneities as

developed in Noll (1967) and Wang (1967). It is not difficult to show that the freedom inherent in the

choice of material isomorphisms is governed precisely by the material symmetry groups of the different

points. Specifically, if PXY is a given material isomorphism between the points X and Y, then the set of

all possible material isomorphisms, consistent with the constitutive equation of the body, is given by:

PXY = PXYgX = gYPXY = gYPXYgX (4)

where QX and Gy are, respectively, the symmetry groups of X and Y. If we now equip the body with

the collection of all material isomorphisms, we clearly obtain a subset QB of the groupoid HB. Moreover,

this subset is itself a groupoid, since it satisfies the following properties (Mackenzie, 1987):

(i) Partial multiplication

A partial multiplication (or grupoid operation) wz between elements w, z of QB is defined whenever

pr2 (z) = prl Moreover, pr1(wz) : pr1(z) and prg (wz) : prg

(ii) Associatioity

The groupoid operation is associative, namely:

u(wz) = (uw)z (5)

for all v,w‚ z 6 QB such that pr1(u) = pr2(w) and pr] (w) =pr2(z).

Local unit

For each X E B there exists an element eX 6 QB which acts as a unit at X in the sense that:

PT1(ex) = PM(ex) = X (6)

and

zepmz) = ewe—oz Z z I (7)

for all z 6 QB. (In our case, ex is simply the identity isomorphism of TXB).

(iv) Inverse

Each z 6 QB has a two—sided inverse z—1 6 GB satisfying:

PH ([1) = 1W2 (z) pr2(z"1) = pr1(z) (8)

z—lz : eprdz) ZZ—l : epr2(z) (9)

These properties simply reflect the fact that, with the restricted collection of maps afforded by the

material isomorphisms, the body manifold is still endowed with pairwise point operations which can be

composed and inverted. We may say, then, that QB is a reduction of HB. Its structural group is the

symmetry group of any one of its points (these groups are all mutually conjugate). We call this object

GB the material groupoid of B relative to the given elastic constitutive law.

The question of local homogeneity boils down to the determination of whether or not this material groupoid

is integrable. Integrability of a groupoid can be expressed as the condition of existence of local charts
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such that the pull—back of the canonical unit section of H72" to I13 belongs to the reduced groupoid QB.

This, in a nutshell, is the theory of inhomogeneities of N011 and Wang rephrased in terms of its most

natural setting, the theory of Lie groupoids.

3 Extended Notions

It should be clear from the previous presentation that homogeneity is a property which can only be

defined in uniform bodies. Indeed, in the absence of uniformity, how can one define a materially based

groupoid, whose integrability will be the judge of local homogeneity? It is a remarkable fact that, even

in the absence of material uniformity, certain types of material bodies may exhibit enough structure to

enable the existence of a materially based groupoid.

Indeed, consider the case of an elastic material body such that the material symmetry groups of all of

its points are mutually conjugate within the general linear group. We call this property unisymmetry. It

follows from their very definition that

uniformity —> unisymmetry (10)

but the arrow in this statement cannot be reversed in general. For it may well happen that a functionally

graded solid body is, say, fully isotropic at every point but with smoothly varying elastic properties from

point to point. Having ascertained, through the constitutive equation, that a body is unisymmetric, it

follows that a collection CXy of non—singular linear maps exists between the tangent spaces of every pair

of points (X, Y) of B, with the property that ny E CXy if, and only if,

QY Z CXYgXC}; (11)

We call CXY a symmetry isomorphism. The set CXy of all symmetry isomorphisms between X and Y

may be called the conjugator between those two points.

What is the degree of freedom in the choice of CXy? It is not difficult to see that

CXY = C'XYNX Z NYCXY = NyCXYNX (12)

where MK and NY are, respectively, the normalizers of the groups fix and fly within the general linear

group. We recall that the normalizer N(Q) of a subgroup Q of a group ’H is the set

Mg) = {H e HjHGH—IVG e g} (13)

It is now a matter of direct verification to ascertain that a unisymmetric material body equipped with the

collection of all its symmetry isomorphisms constitutes a subgroupoid CB of HB. In principle, therefore,

we can use this weaker material structure to define the concept of local homosymmetry by identifying it

with the integrability of CB. We have thus extended not only the notion of uniformity, but also that of

homogeneity.

4 Physicality

The geometrical object CB just defined makes perfect mathematical sense, and so does its integrability.

Does this definition, however, make any physical sense? One of the worries is that the normalizer of a

group within the general linear group includes automatically all homogeneous (“spherical”) dilatations,

since they commute with every matrix. These undesirable elements of CB cannot be eliminated canoni—

cally, unless there is some extra information available, beyond pure unisymmetry. The type of information

necessary is contained in the answer to the following question: do the material points exhibit any pre-

ferred states? Such states could be ones in a preferential density or, even better, in a natural relaxed

state. In both these cases, it is possible to sharpen the groupoid C8 by further reducing its structural

group to, respectively, the normalizer of the symmetry group within either the special linear group or the

orthogonal group.

In the latter case, it can be shown (Epstein and de Leon, 2000) that, for a number of solid symmetries, the

notions of homosymmetry and homogeneity coincide. Namely, if a body is uniform but its integrability is
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determined only on the basis of its unisymmetry, the same result is obtained as if it had been determined

on the basis of its uniformity. This surprising property is not true in general, but it is true, for example, in

the following important classes of elastic solids: fully isotropic, transversely isotropic and orthotropic. In

conclusion, we have obtained a means for gauging homogeneity for functionally graded bodies exhibiting

just the relatively weak property of having the same type of material symmetries at all points.
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