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Geometry of Material Space : Its Consequences in Modern

Computational Means

G. A. Maugin

Applications ofthe concepts ofmaterial manifold, pseudo—momentum and Eshelby stress (canonical « material »

momentum and stress) to efi‘icient numerical schemes in the thermomechanics ofsolids are given. These schemes

are that of the finite-element method whose uncritical application may cause the appearance of spurious confi-

gurational forces, that for the finite-element method where the balance of canonical momentum provides a po-

werful tool to study the accuracy of the constructed scheme, natural boundary conditions in gradient theories,

and a perturbational approach to localized nonlinear waves, and that of the finite—volume method which seems

to be particularly well adapted to treat the numerics ofwave-like motions in thermomechanical theories ofmate—

rials. The latter method here is akin to a continuous cellular automaton.

1 Introduction

In recent years we have devoted much energy to the development of what we called indifferently the mechanics

of continua on the material manifold, Eshelby’s continuum mechanics, or, more fancyfully, M 3, the «Material

Mechanics of Materials ». The essential idea of this formulation is that a canonical formulation of continuum

mechanics (and more generally physics) can only be given on the material manifold, i.e., the continuous set of

material points that build up the body under consideration (cf. Maugin, 1993, 1995), this in contrast to the classi-

cal formulation in physical space, the space of placements as the body evolves in time. The main ingredient in

this formulation is the expression of the balance of « pseudo-momentum » (also called material momentum or

canonical momentum) which appears to be generated by virtual displacements or velocities on the material mani-

fold (a change of « particle » or « labelling » rather than an actual change of physical placement of the same par-

ticle). This somewhat original viewpoint, that is desorienting and puzzling to many engineers, in fact is the arena

of the intrinsic formulation of structural rearrangements manifested by the presence of a continuous distribution

of defects such as dislocations (cf. Epstein and Maugin, 1990), of anelasticity (cf. Epstein and Maugin, 1995,

1996, 1997; Cleja—Tigoiu and Maugin, 1999), growth (Epstein and Maugin, 1999), phase transitions (Maugin and

Trimarco, 1995), damage, etc. It is also the stage on which driving forces on micro and macro—defects play,

whether in fracture (cf. Maugin and Trimarco, 1992) or more generally at singular sets of points in a material

body (cf. Maugin, 1998a). Most of these are reviewed in a synthesis work (Maugin, 1999a) that emphasizes the

fact that the balance equation of pseudo—momentum plays the same ontological role as the energy balance, i.e., it

is canonical and gathers contribution of all fields involved in the considered theory of continua. This relates to

the fact that it is the conservation law that is associated with the spatial parametrization of the physical modelling

and this parametrization applies to all fields involved, whether of mechanical nature or not. Simultaneously, it is

the equation that brings up the notion of material inhomogeneity to the foreground.

It is usually, and correctly, remarked that at all regular material points, the balance of pseudo-momentum is

« equivalent » to the balance of physical momentum. The reason for this is that at all such points, the former can

be deduced from the latter by some algebraic and analytic operations allowed by the smoothness of the fields.

That is, at such points the balance of pseudo-momentum is an identity. However, it is not exactly true that both

equations of momentum are operationally equivalent, being then only two different « projections » on different

manifolds, of the same equation, because they cannot play the same role in problem solving. This is due to the

fact that, whether we like it or not, applied forces - which are real physical forces in the Newtonian-Euler-Cauchy

sense - are prescribed in physical space (a world to which they belong by definition) so that they intervene in

problem solving in the equations (field equations and boundary conditions) expressed in that space. Therefore,

initial-value boundary-value problems are, of necessity, solved, analytically or numerically, in physical space.

The question then arises of the usefulness of the balance of pseudo-momentum at regular material points, its role

in capturing singularities being clear at singular points. This usefulness resides is the redundancy between the two

(essentially vectorial) equations as it can be exploited thus. While the balance of physical momentum - and other

equations governing other fields than deformation —, are used in the direct problem solving, the balance of pseu-
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do—momentum (or its << equilibrium » form where this applies) is to be exploited either in the form of a criterion

to be satisfied by the already obtained point—wise field solution (e.g., in fracture, phase-transition, anelasticity,

etc), or as a way to checking globally the accuracy and quality of the obtained solution. This is very similar to the

exploitation of the energy balance in the numerics of hyperbolic systems where the accurarcy of the adopted

scheme is measured by a global energy criterion (i.e., does the scheme conserve energy 7). Herein below we

focus attention on such an application of the balance of pseudo-momentum in various numerical techniques,

noting in passing that the notion of momentum is vectorial, and therefore << directional », and thus richer than that

of energy (a scalar) which addresses only magnitude. Three numerical techniques are briefly examined in the

light of recent progresses. Before, however, a simple reminder of basic equations is useful.

2 Reminder

For the sake of example, we consider as field the deformation of a materially homogeneous, finitely deformable

elastic body (no thermal effects). Thefield therefore is the so—called placement

x=Z(X,t) (1)

where (X,t) provides the space-time parametrization. X represents the material point or « particle » on the mate—

rial manifold (in fact the three material coordinates), and t is the Newtonian time. The same parametrization

would hold for other physical fields such as the scalar electric potential and the magnetic vector potential of

electromagnetism, or any other field of interest (e. g., a microstructure). The peculiarity of equation (1) is that the

field itself, x, is a space parametrization, but in physical space E3. Let t0 be an applied (physical) body force.

Then the local balance equations of mass, linear (physical) momentum, energy, and canonical (material or

« pseudo ») momentum are given by :

   

% =0 <2)
t X

@ —divRT=f0 (3)

X

aH
— —v .T. =f0. 4(‚IX R( v) v ()

8P .
EX—diva=F0

(5)

 

where we have set

 

v=aa—}fx F=:—§I=VRZ ‚ (6)

H=K+W K=%p0v2 W=W(F) (7)

p=p0v T=8W/8F (8)

P =—-p.F F0 =—f°.F b = (W—K)1R —T.F (9)

Here p is the linear (physical) momentum with components in physical space, T is the first Piola-Kirchhoff stress,

P is the so-called « pseudo-momentum » - it has covariant components on the material manifold - , b is the Es-

helby (material) stress tensor, and F0 is a material force. But this one is simply the pull—back of a physical force

onto the material manifold. Had we considered a materially inhomogeneous body (explicitly X- dependent pO

and W), we would have found in the right-hand side of equation (5) an additional term reflecting directly this
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inhomogeneity. From the point of view of invariance, equation (3) reflects the lack of invariance of the physical

system under physical-space translations because of the presence of a physical forces to, equation (4) relates to

the invariance, of lack of invariance, under time translations, and equation (5) relates to the invariance or lack of

invariance under translation on the material manifold (X translation). The first one relates to a field, the other two

to the space—time parametrization. This would follow from the application of Noether’s second theorem, had we

considered a Hamiltonian-Lagrangian variational formulation. But, in truth, equation (5) can be deduced identi-

cally from equation (3) by mutliplying the latter to the right by F and integrating by parts (for well—behaved Fs),

and this constitutes the essence of the Ericksen-Noether identity. For instance, in quasi-statics (neglect of inertia

terms), equations (3)-(5) reduce to

divRT+f° =0 (10)

’9_W =VR.(T.V)+fO.v (11)
(9t X

diva+F0 =0 (12)

respectively. At all regular material points X we have the following Ericksen-Noether identity

(divRT+f°)F+(diva+F°)=0 (13)

Note that equation (10), valid at all regular points X in S2,, and the associated natural boundary condition at

89
f!

N.T=t0 (14)

are equivalent to the following weakformulation (principle of virtual power)

RBH’ÖH’Ö =0
(15)

where

af)=—JQ T:(VRv*)TdQ 1152199 t0.v*dS P(:):JQ f°.v*dQ (16)

Equation (15) holds for all sufficiently smooth vectorial test functions (physical velocity fields) v*. It is the basis

offinite-element computations. What is the consequence for the variational equation satisfied by b ? To see this

multiply equation (13) by F'1 to the right, multiply the result scalarly by the test function v*, and account for

equation (15) to obtain the following expression:

—J' b:(VRV*)TdQ+J N.b.V*dS+JF0.V*dQ=O (17)
Q, ml 9/

for all virtual material velocity fields V*=—F_1.v*. This is formally equivalent to equation (15). But one

should note that the second term in equation (17) does not correspond to a prescribed surface stress. Because of

this, equation (17) is not applicable as such, i.e., as a weak formulation of the original boundary—value problem.

Rather, we note that for any velocity field we have

>l< = * O‚[39,be dS (N.V )WdS+J.QIt .v*dQ (18)

so that we obtain the following original result (note that N is directed outward):

G(§2,;V*)s—'[90 W(N.V*)dS =49 b:(VRV*)TaIQ+JQ T:(VRV*)TdS2 (19)
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For a self-equilibrated (Piola—Kirchhoff) stress field (to = 0, t0 =0), we have

[9 T:(VRV*)TdQEO (20)
I

so that (19) reduces to the following formula for the flux of elastic energy outward the material volume 9, for a

material velocity field V* :

G(Q‚;V*)=—_[Q b : (VRV*)TdQ (21)

The quantity G is is usually called an energy-release rate (compare to the general definition involving the influx

of the Hamiltonian density in Dascalu and Maugin, 1993). The result (21) was hinted at in a conversation with

Paul Steinmann (Kaiserslautern, Sept.1998).

Equation (3) through (17) can be generalized to more involved cases including additional degrees of freedom

(e.g., a microstructure such as in micropolar elastic bodies, Maugin, 1998b) or electromagnetic deformable bo—

dies (cf. Maugin, 1999b) or nonsimple elastic media accounting for the second gradient of strain (so—called se-

cond-gradient theory ; cf. Maugin and Trimarco, 1992). This second case is particularly relevant to the contents

of Section 4 below.

3 Finite-Element Method

In classical elastic engineering computations, when true material inhomogeneities or defects (field singularities)

are absent, the FMite-Element Method (FEM) is based on a discretization of equation (15) by introducing inter-

polations of test functions. Imagine that the computation is also made in the absence of applied body forces

(10 = 0). Then divRT = 0 is solved by the FEM and this yields a solution that depends on the location of nodes of

the FEM net on the material manifold. Knowing such an FEM ficld solution, the quantities b and divRb can be

evaluated, and this may yield

oil'va at 0 (sayFm)
(22)

i.e., there may exist a spatial distribution of spurious material forces Fer" , where there should be none according

to the Ericksen-Noether identity. Equation (22) says something about the faithfulness of the FEM net and the

question naturally arises of the tailoring of a finite-element net in such a way that these spurious configurational

forces be made to vanish. They are conflgumtional forces as they do depend on the location of nodes on the

material manifold. One may think to release (or make float) the inner material nodes so as to make these spurious

material forces vanish, or at least to minimize them. This idea belongs to Braun (1997) and Steinmann (Kai-

serslautern; Sept. 1998). In particular, the first author has shown that a distribution of practically vanishing confi-

gurational nodal forces could be obtained. Simultaneously, the total energy is reduced in the process and, there—

fore, becomes closer to the minimum attained by the exact solution. Unfortunately, this optimization procedure

may be accompanied by the formation of badly shaped elements which may not improve the finite-element solu—

tion. In the process of the above FEM, since all required quantities are already computed in this optimization

procedure, equation (21) affords a particularly economical and rapid means of computation of the energy-release

rate, if the latter is needed in some criterion of progress.

4 Finite-Difference Method

The Finite-Dlfi‘erence Method (FDM) is the numerical realm of nonlinear hyperbolic systems. This discretization

method finds its origin in analysis and the approximation of space derivatives of various orders by finite differen-

ces. The school of Courant (Lax, Wendroff, etc) in the USA and that of Godunov and Yanenko in Russia are

responsible for its successes in treating problems including sharp field discontinuities such as shock waves in

fluids. The accuracy of the devised FDM schemes is measured by their property to more or less conserve the

global energy of the system. That is, in the present case, the numerical simulation of nonlinear—wave propagation

is performed on the FDM discretized version of thefield equation (3) and, for a conservative system (f0 = 0), it is
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checked whether the global (space integral) version of the energy equation (4) holds for the numerically obtained

solution. The result of this check is expressed by announcing that e.g., << energy is conserved up to x% », values

of the order of 10'3 being quite normal. From that viewpoint, checking that the global version of the here redun-

dant pseudomomentum balance law (5) holds for the numerical solution obtained is also a valid criterion for the

accuracy of the scheme of the FDM scheme, except for the vectorial nature of that equation which may mean a

check along three different axes instead of the conservation of a single scalar entity as is the case for the energy

equation. This places energy and pseudomomentum on equal footing or, as we like to say, on the same ontologi-

cal level. In particular, for systems of field equations, both canonical equations and accuracy criteria concern the

global physical system and not only one degree of freedom in spite of the 3D vectorial nature of pseudomomen-

tum. Thus, following Christov and Maugin (1999), we may thus speak of FDM schemes that more or less con-

serve both energy and canonical momentum.

With the introduction of localized nonlinear waves of the solitary-wave type (kinks, humps, bound states, soliton

complexes) in nonlinear dispersive systems of field equations, the exploitation of the pseudomomentum balance

law is even more fruitfull. This is easily understood by examining two specific questions. First, in a general way,

for such systems, the field equations (equation 3 and the equations governing additional fields if any) present

both nonlinearities and high-order space or mixed derivatives. This is the case when treating an elastic crystal in

which both nonconvexity of the strain energy and a weak nonlocality (gradient effects) are taken into account

(e.g., in shape-memory alloys). An example of such systems is the following 1D generalized Boussinesq equation

(cf. Maugin and Christov, 1999) where subscripts t and X stands for partial derivatives, s is a strain (e.g., one

shear component), F(s) is a polynomial in s starting with second degree, and ß is a positive or negative parame-

ter:

s” —c%sxx —[F(s)— flax +sXXXXlXX = 0 (23)

A stifl mathematical system such as this one, although one dimensional in space, requires devising a high-

performance FDM scheme (see, e.g., Christov and Maugin, 1993, 1995). This makes that FDM is also an art. We

do not write here the pseudomomentum balance equation (5) that corresponds to the field equation (23) because

the formal expression (5) suffices for our general purpose. Imagine that we have obtained analytically (with some

luck) or numerically, strongly localized solitary-wave—like solutions of equation (23) thats we call << shapes » S.

These corresponds usually to spatially uniform solutions at infinity. First the writing of the global form-by inte-

gration over the real line R in the absence of force to— of equation (5) provides theoretically an equation of the

following type

d—P = 0 P z: Jde (24)
dt R

This is a Newtonian-like equation of inertial motion for the << shape >> S. There is no term in the right-hand side of

equation (24)1 because all field derivatives go to zero at infinity for these solutions S which, therefore, are stea—

dily progressing. As a matter of fact imposing the vanishing in the right-hand side of equation (24)] reveals the

natural limit conditions on higher—order field derivatives, that classical types of boundary conditions do not con-

sider. But in the numerical simulation of the steady propagation of << shapes » S, we have to work either on a

periodic landscape arrangement or on a finite space interval. The satisfaction of these conditions is a necessity for

the realization of the inertial motion globally governed by equation (24). Otherwise, the nonzero values at the

interval boundaries will in fact create a perturbing driving force that will accelerate or slow down the supposedly

steadilly moving shape, with a motion equation

dP d ‘ ‘
= F rwmg i 0

dt ( )

replacing then equation (24)1. Making F‘mvmg zero or minimal is a justified endeavour. But it is clear that the

same scheme — equations (24)1 and (25) - can also be exploited to treat the influence of nonzero applied forces

(or any term that can be viewed as a perturbation on the inertial motion of undeformed << shapes >> present in the

right-hand side of equation (2) to start with. Then the initial « shape » solutions are found - with some freedom

left to some of their parameters - on the basis of the homogeneous form of equation (2). Equation (25) where the

right hand-side is then given by the space—integrated materially-convected form of this perturbing force, provides
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the time—evolution equation of these gross parameters (e.g., speed) in solutions (transient nonlinear localized

wave forms) that cannot be obtained through any other known method.

Examples of applications of the ideas presented in this Section are given in Christov et al (1996), Maugin and

Christov (1999) and Maugin (1999b). Note that like in the previous section, and in accord with the general philo—

sophy of this presention, the field equations, per se, serve one purpose, while the energy and/or pseudomomen—

tum equations serve another one. Note by way of conclusion that equations (24) and (25) do not presuppose that

the point mechanics (relationships between mass, momentum, velocity and energy) satisfied by the « shapes » in

question is Newtonian. These relationships are part of the problem.

5 Finite-Volume Method - Continuous Cellular Automata:

Thermodynamically based Numerical Scheme

The Finite-Volume Method (FVM) considers a fixed grid and cells, rather than discrete points, as discrete ele-

ments. It directly reflects the notion of conservation laws which apply to these cells. The theory presented in

Section 2 clearly emphasizes the notion of conservation laws. Therefore, the FVM seems, at the price of some

adjustments, to be appropriate to the treatment of dynamical problems such as generally posed in Section 2. It is

all the more true that cells thus considered may also be viewed as the elementary blocks of a thermodynamics of

so—called discrete systems in the manner of Schottky (cf. Muschik, 1990). In this thermodynamics the state in one

discrete system (e.g., one of the above cells) is defined in terms of its environment which may or may not be in

thermodynamical equilibrium. Contact thermodynamical quantities (e.g., contact temperature, contact stresses)

are introduced to characterize the state of the discrete system (in fact defined at the boundary surface of a cell in

the FVM). This idea of making a cell’s state depend on that of its neighbors is tantamount to introducing a stra—

tegy for the propagation of the thermodynamic state. This is akin to introducing the notion of cellular automa-

ton, although discretization here is based on continuous balance laws, so that we may refer to this method as that

of continuous cellular automata. The referred to above strategy is essential in some dynamical thermomechanical

problems such as that of the propagation of a phase-transition front. It is along this line of thought that our most

recent works develop.

In a more traditional, engineering-like approach to that problem, which nonetheless makes use of the notions of

canonical momentum and Eshelby stress (cf. Maugin and Trimarco, 1995; Maugin, 1998a, 1999a), a thermody—

namically admissible criterion ofprogress for such fronts is decided on the basis of the following assumptions:

(i) the phase front is a singular surface of zero thickness; (ii) this front does not present any dislocations, (iii) the

criterion is essentially of the plastic or Viscoplastic type (i.e., presenting both a threshold and a characteristic time

scale). The computational strategy then is the following: at each instant of time, for which we know the location

of the transition front, the problem is solved spatially on account of the basic field equations and boundary and

matching conditions, for instance by the FEM. Knowing then the fields on both sides of the transition front at all

ot its points, the driving force is evaluated point wise (it is related to the jump equation associated with the ba-

lance of canonical momentum) and the future progress of the front is decided on account of the criterion. This

obviously shows again that equations such as (3) and (5) intervene at different steps of the formulation, the se—

cond being accounted for on account of the jump-like solution of the first.

In the new scheme developed starting with Berezovski’s work of 1997, all thermomechanical balance laws are

expressed for each cell, and the bulk quantities within each cell are related to the contact ones through the ther-

modynamics of discrete systems. A high—performance wave-propagation algorithm is exploited - using Lax-

Wendroff and Godunov’s ideas - that yields extremely good results in the simulation of the rapid progression of

sharp wave fronts in 2D elasticity or thermoelasticity (cf. Berezovski and Maugin, 1999a,b). It is interesting to

give a very few elements of that type of approach, for instance in linear isotropic, but materially inhomogeneous,

thermoelasticity where the basic field equations are equations (3) and (4), the latter yielding in fact the equation

of heat propagation [equation (5) is to be exploited later on]. More precisely, the balance of linear (physical)

momentum, the time-rate of change of the Hooke-Duhamel constitutive equation, and the heat-propagation equa

tion read as follows at any regular material point in the absence of body force and heat source:

maxim :0
dt (9x)

J

(26)
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am 07v av. 8v- ar
’J =‚1 _k§.. _l _J _5„ 27

a: boom "+“(X)[axj+axii+m(x)at '1 ( )

8(C(X)T)=L k(x)5’_T +m(x ka (28)
3t 07xi 0716i äxk

where p0 is the density of matter, 0' is Cauchy’s stress, Ä and y are Lame coefficients, m = -a (3/1+2‚u) is the

thermoelastic coupling coefficient if a is the dilatation coefficient, C is the heat capacity, and k is the heat-

conduction coefficient; T denotes the small deviation of temperature. The material inhomogeneity is explicitly

indicated by the X—dependence of some of these coefficients. By integration over a cell or finite-volume element

V, we obtain the following system of FVM balance equations:

‚9
EL povidV = '[W zünjdA (29)

ä
:97 IV 3de = LV HM;de (30)

3
EL aüdv = LV (2wljknk +Äöiijnk )dA + (oil- (31)

g]; CTdV = LV (k(n.V)T +kank )dA + (W (32)

whcrc

Hijk 5(1/2)(5ikvj +5jkVi) (33)

and source terms due to material inhomogeneities (labelled << inh >>) and thermoelastic couplings (labelled << te »)

are given by

 

(Pr) = (0;; + (Difh (34)

42,3? = JV may. 3—: dV (35)

(palm =~J.V vk 5:; 51:, +viäljf+vj dV (36)

90m" = {VVk (5%W (37)

Herein above V,- and 2}} are the << contact >> velocity and Cauchy stress defined at the FV element boundary of unit

outward normal ni. G) denotes the << contact temperature ». Contact and bulk quantities are related by thermody—

namic constraints such as the following one for the stress [labels (1) and (2) refer to two neighboring cells].

agil) ‚920) 30(2) 3292)
Q) 2(1)_T(1) _‘1 _8(1) _’-’ = ‚(2) (2)_ (2) _’1_ _ (2) _Uall, + ‚J 8T 8T all +2” T 8T G) 8T (38)

E € E 8
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The reader is referred to Berezosvki (1997) and Berezovski and Maugin (1999a‚b) for the application to the

numerics of smooth elastic and thermoelastic 2D wave propagation. What about the application to the propaga-

tion of phase-transition fronts where, of necessity, a criterion of progress (change of thermoelastic phase as the

front progresses) is involved. This must necessarily exploit the balance of pseudomomentum in a form adapted to

the continuous—cellular automaton formalism. As a matter of fact, in the present case, this additional balance law

reads, at each regular material point:

W inh m
_'._ __ = . + , 39

a; axj f’ f’ ( )

where we have set (W is the free energy per unit volume)

piw = —p0vjuj„- by; = —(L’h5fl +0'jkukqi) (40)

1 r aL’” aT aw
L’h =— x v2 —W £~~,T;x I” = — A’h =S—— S =—— 412 P0( ) (U ) f, xi W f, axi 8T < >

The two source terms in equation (39) are due, respectively, to true material inhomogeneities and pseudo-

inhomogeneities caused by thermal effets. (Cf. Maugin, 1993, 1995); piw , the purely quadratic part of pseudo—

momentum, is called wave or crystal momentum, and is the corresponding part of the Eshelby stress tensor,

with u,- the infinitesimal displacement. The integral of equation (39) over a VE cell yields

1]- deV—J- n.BYYdA=d>W (42)at V I W .1 .11 z

where

da" =Iv(ff"” +f‚-"’)dV <43)

and B}: is the « contact » Eshelby stress tensor. Together with the Eshelby tensor of the neighboring cell, the

Eshelby stress 1);? satisfies the following time-evolution equation and thermodynamical constraint:

 

r917w ach 80k au av
Jl =_ 6U+ J k _ _k

a: (a; -” a: ax, +0” ax. (44)

and

3 äuj

—— —— W. bw.*20

aim} w- w ) (45)

where the minus sign in equation (45) originates from the fact that the Eshelby stress expands power in the

«inverse motion » velocity field (Maugin, 1993). A short algebra allows one to show that the volume-element

integral of equation (44) yields the following expression:
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__P_C_ 5..__1_i+ J dv

+Jv [am ax, 3t] -" at ax, ax. v"
l

(46)

 

The integrand in the left—hand volume integral is no other than the « quasi-static » Eshelby stress which indeed

governs the phase transition. The criterion of progress must, therefore, exploit equations (42) and (46). Related

works are in progress.

6 Conclusion

Referring to all above considered cases we must, by way of conclusion, emphasize the different roles played by

the field equations, per se, and the canonical equation of momentum. The latter proves to be extremely useful,

and in fact the only tool available, to devise criteria of progress. This applies in all numerical methods examined,

whether of the finite—element, finite-difference, or finite—volume type. These applications succeed in granting a

clearly engineering-like flavor to concepts, those of pseudomomentum and Eshelby stress, whose origin is to be

found in abstract field theory and the geometry of the material manifold or material space.
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