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The Divergence of Stress and the Principle of Virtual Power on

Manifolds

R. Segev, G. Rodnay

Stresses on manifolds may be introduced from two diflerent points of view. For an m-dimensional

material universe, the variational approach regards stresses as fields that associate m-forms, the power

densities, with the first jets of generalized velocity fields. In the second approach, the Cauchy approach,

stresses are covector valued (m — 1)-forms whose odd restrictions to the the boundary of bodies give the

surface forces on them. The relation between the two approaches is studied for general manifolds that

are not equipped with a connection.

1 Introduction

This paper considers some aspects of force and stress theory on general differentiable manifolds. In

the course of generalizing force and stress theory to differentiable manifolds, one encounters difficulties

originating from the lack of metric structure used in the traditional formulation of Cauchy’s theorem

for the existence of stresses. In addition, since vector fields on manifolds cannot be integrated, one has

to integrate the power density and define forces as functionals producing the power from generalized

velocities.

For bodies that are m—dimensional manifolds, stresses may be introduced using two different approaches.

The first approach, to which we will refer as the variational approach, introduces stresses as measures

on bodies that produce the power from the derivatives, or more precisely jets, of the generalized velocity

fields. This approach was developed in Epstein and Segev (1980) and Segev (1986). The second approach,

to which we refer as the Cauchy approach, developed recently in Segev (1998) and Segev and Rodnay

(1999), presents stresses as (m — 1) vector valued differential forms on the material manifold whose

oriented restriction to the boundaries of bodies, (m — 1)—dimensional submanifolds, provide the surface

forces on them.

Some of the relations between the variational approach and the Cauchy approach is discussed in Epstein

and Segev (1980) and Segev (1986) for the particular case where a connection is given on the space

manifold. In this work we will study these relations further and will generalize them to the case where a

connection is not specified.

The general setting is as follows. The material manifold or universal body is a manifold U of dimension

in, and bodies are compact m—dimensional submanifolds with boundary of LI. For a given configuration

of the universal body, a generalized velocity field is a vector field or a section w: Ll —> W of a vector

bundle 7r: W —> U. This vector bundle may be thought of as the pullback of the tangent bundle of the

physical space manifold using the current configuration of the material manifold in the physical space.

(For motivation and details see Segev (1986).) Throughout this paper it is assumed that the manifold

u is oriented by a specific orientation. This restriction, that we make in order to simplify the notation,

may be removed using odd forms (see Segev and Rodnay, 1999).

2 Generalized Cauchy Stresses

This Section reviews the generalization of the Cauchy approach for the introduction of stresses to man—

ifolds. The Cauchy approach views stresses as means for specifying the surface forces on the various

subbodies by a single field—the stress field.
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2.1 Body Forces and Surface Forces

As mentioned above, forces for manifolds are defined in terms of the power they produce for a generalized

velocity field. In general, force densities will be pointwise linear mappings that take generalized velocities

and give the corresponding power densities—forms of order n S m that can be integrated over n—

dimensional submanifolds of LI.

Thus, a body force over a body B is a section ,65 of L(W,/\m(T*B)) and a surface force on B is a

section 7'3 of L(W, Am_1(T*öB)). Using body forces and surface forces, the force (power functional) FB

is represented in the form

173(10) = /ßß(w) +/Tß(w)

B 613

We note that body forces and surface forces may be regarded as covector valued forms. For example, a

surface force 7'3 may be identified with a section 7‘3 of A'"_1(T(6B),W*). The two are related by

7°B(v1‚. . . ,vm_1)(w) = T3(w)(v1, . . . ,vm_1)

2.2 Cauchy Stresses and Their Inclined Restrictions

We use the term (generalized) Cauchy stress for a section of the bundle L(W, Am_1(T*L[)). Again, a

Cauchy stress may be regarded as an element of Am—1(TZ‚{‚W*). A Cauchy stress a associates with an

arbitrary body B a surface force TB as follows. Consider a body B and a point a: G ÖB. Let U E Tzu be

a vector transversal to 6B and pointing outwards from B. The inclined restriction L2}(0’)z of am : (7(2))

to L(W‚ Am_1(T*8B)) is given by the requirement that for any element w E Ww

LE(O’)$('LU)(1)1,...,’Um_1) : U,(w)(v1, . . . ‚vm_1)

if {i}, 111, . . . ,vm_1} are positively oriented and

L}§(a)m(w)(v1,. ..,vm_1) = —az(w)(v1,...,om,1)

if {1), v1, . . . ,vm_1} are negatively oriented. (In other words, the vector valued forms associated with a is

restricted to 8B with odd dependence on the outer orientation.) Thus, the surface force induced by the

Cauchy stress a is given by the generalized Cauchy formula

It is noted that in case B and B’ are two bodies with TZBB = Tzöß’ that lie on opposite sides of the

common tangent space, then, L};(a)(x) : —Lg‚(a)(x) as expected.

3 Generalized Variational Stresses

3.1 Cl-Force Functionals

The rational behind the generalized variational formulation of stress theory is the framework for mechani-

cal theories where a configuration manifold is constructed for the system under consideration, generalized

velocities are defined as elements of the tangent bundle to the configuration manifold, and generalized

forces are defined as elements of the cotangent bundle of the configuration space. If one considers a

configuration of a body in continuum mechanics as an embedding of the body manifold B in a space

manifold M, the natural topology for the collection of such embeddings is the C'1 topology for which the

collection of embeddings is open in the collection of all C1 mappings of the body into space. Using this

topology, the tangent space to the configuration manifold at the configuration It: B —) M is 010;“ (TM)),

the Banachable space of C1 sections of the pullback K,* Thus, forces in continuum mechanics are

elements of 01(It*(TM))*—linear functionals on the space of differentiable vector fields equipped with

the C'1 topology.
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The basic representation theorem (see Segev, 1986) states that a force functional F E 01(n" (T/\/i))‘k may

be represented by measures on LI—the variational stress measures— valued in J1(It*(TM))*, the dual

of the first jet bundle J1(Kl* —> U.

Assuming that K, is defined on the whole of the material universe Ll, we use the notation W for [6*TM.

This vector bundle can be restricted to the individual bodies, and with some abuse of notation, we use

the same notation for both the bundle and its restriction to the individual bodies.

3.2 Variational Stress Densities

In the smooth case, the variational stress measures are given in terms of sections of the vector bundle of

linear mapping L(J1 (W), Am(T*Z‚{)). We will refer such sections as variational stress densities. If S is

a variational stress density, then the power of the force F it represents over the body B, while the the

generalized velocity is w, is given by

F50») = / sumo»

B

This expression makes sense as S(j1(w)), is an m—form whose value at a point a: E B is S(x)(j1

Assume that a vector bundle coordinate system (93",w0‘), i : 1,...,m, a : 1,. .. ,dim(W) is given‘in

7r‘1 (U), for an open set U C L1. Thus, a section ofW will be represented locally by the functions {w°‘(a:“)}

and the jet of a section is represented locally by the functions {wa(wi)‚w5(xk)}, where a subscript

following a comma indicates partial differentiation. A variational stress density will be represented

locally by the functions {Sa1„_m, SZflmm} so that the single component of the m—form S(j1 in this

coordinate system is

(w))lmm = almmwa +

Note that the notation distinguishes between the components of S that are dual to the values of the

section and those dual to the derivatives by the number of indices only. (Here and in the sequel we

abuse the notation by using the same notation for both a function and its values.) Since in the sequel we

consider only the smooth case, we will use “variational stresses” to refer to the densities.

3.3 Connections and Variational Stress Tensor Densities

If a connection is given on the vector bundle W, the jet bundle is isomorphic with the Whitney sum

W 6911 L(TU, W) by j1(w) H (w, Vw), where V denotes covariant derivative. Thus, in case a connection

is given, a variational stress may be represented by sections (So, S1) of

m

L(W, Kama) as“ L(L(Tu, W), /\(T*u))

so the power is given by (see Segev, 1986)

Fß(w) = / 50m) + / 31m»)

B B

We will refer to the section 51 of L(L (TU, W), Am(T*Ll)) as the variational stress tensor.

In Segev (1986) it was shown that with a given connection, and with appropriate definition of the

divergence of the variational stress tensor $1 the power may be written in terms of body forces and

surface forces.
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4 The Cauchy Stress Associated with a Variational Stress

4.1 The Vertical Sub-bundle of the Jet Bundle

We recall that a k-jet A E Jk is an equivalence class of sections of W that have the same values of

their k-tangent at m, where for k : 0, J0(W) is identified with W. Let m1,: J 1 (W) —> W be the natural

projection on the jet bundle that assign to any 1-jet at m 6 LI the value of the corresponding O-jet, i.e.,

the value of the section at x.

We define VJ1 (W), the vertical sub-bundle of J1(W), to be the vector bundle over L1 such that

VJ1(W)=(7F3)_1(0)

where 0 is the zero section of W. A jet A e J1 (W) is represented locally by (mi,Aa,A§-?), where A"t

represent the value of a section and A? represent a value of the derivative of a section in the particular

coordinzzte system chosen. Thus, elements of the the vertical sub—bundle will be represented in the form

(mi, 0, A]. ).

Next, we show that VJ1(W) is isomorphic to the bundle of linear mappings L(TU, Consider a point

x0 E U and let w be a section of W that represents an element A E VJ1(W)w0, i.e., w(xo) : 0. We will

show that w induces an element of L(TU, W) linearly in A and injectively. Consider the mapping

Tow: Tzou —) T0(10)W

given by

T0w(v) = Tw(v) — T0(v) v E T1011

Note that the subtraction done in TW makes sense as both vectors are tangent at the zero vector at

W“. Clearly,

T7roT0w=T7roTw-T7TOT0=0

so the image of Tow is in the vertical sub-bundle of TW, specifically in TM10) As a tangent space

to a vector space, there is a natural isomorphism

7;: T0(z0)(W$O) —> W“

If in local coordinates 'u and w are represented by (933,713.) and (mi, w“) respectively, with wa(m0) : 0, then,

j1(w) is represented locally by (53", w",wfic) and Tw(v) is represented by (mg,0, vj, wink). In addition, as

T0('u) is represented by (wg, 0,1”, 0), T0w(v) is represented by (926, 0, 0, wivk) and ioTow(v) is represented

by (mäflufig’uk). Thus, z'o Tow(x0) E L(T10U, W30) and from the local representation, (rawg), it is clear

that it depends on the jet of w linearly and injectively. We conclude that the mapping that takes the

J1—equivalence class of w into i 0 Tom is an isomorphism that we denote by

1+: VJ1 (W) —> L(Tu, W)

4.2 The Vertical Component of a Variational Stress

Let IV: VJ1 —> J1 be the inclusion mapping of the sub—bundle. Clearly IV is injective. Thus,

we may consider the linear injection

I : IV o (1+)-1: L(Tu, W) —> J1(W)

If an element A E L(TU‚ W) is represented locally by ($1, Ag), then (I+)‘1 (A) is represented locally by

(m’,0,A§’) and so is Z(A).
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The foregoing allow us to define a “dual” linear surjection

m m

1*: L(J1(W), /\(T*u)) —> L(L(Tu, W), /\(T*u))

given by I*(S) : S oI.

For a variational stress S, we will refer to

m

5+ = 1*(5) e L(L(TL1‚ W), /\(T*u))

as the vertical component of 5'. Assume that the value of the variational stress is represented locally by

(S„1‚__m,Sanm) and 5+ : 1'" (S) is represented by (5+;1mm). Then, for an element A E L(TU,W)$

that is represented locally by (mi, A?), we have

s+"
a1...7n

AU

j
: Sal...m0+ Ag1...m J

i

a1...m
Hence, the collection of components {5+ : Saum} has an invariant meaning.

Clearly, one cannot define invariantly (without a connection) a “horizontal” component to the stress.

4.3 Variational Fluxes

Since the jet of a real valued function (,0 on LI can be identified with a pair (go, dgo) in the trivial case where

W = L1 >< R, the jet bundle can be identified with the Whitney sum W EB“ T*U. Thus, VJ1 (W) can be

identified with T*L( and the vertical component of the variational stress is valued in L(T*Ll, Am(T*Z‚{)).

We will refer to sections of L(T*LI, Am(T*Z‚{)) as variational fluxes.

We first note that the mapping

m—l

iA: /\ (Tm) —> L(T*u, Kama)

given by iA(w)(¢) = (b /\ w is an isomorphism. (Clearly, the dimensions of the two spaces are equal and

iA(w) = 0 implies that w : 0.) Let w E Am_1(T*U) be given locally by w1‚„‚:„mdx1/\.. .AdasiA . . . Admm,

where the “hat” indicates an omission of the term, and let wA : iA(w) be given by wAämm. Then, for a

1~form 45 given locally by ¢jdzcj we have

WA‘immc3idx1A. . .Adxm : qu'dxj A w1_‚_i___mdx1/\. . .AdxiA. . .Adxm

= 2i(—1)i—1w1...i...m¢idwl/\ . . . Admm

so wA’imm — (—1)i‘1w1_„3„_m is the local expression for the isomorphism. (Note that here and in the sequel

we write the summation symbol explicitly when Einstein’s summation convention cannot be used clearly

as in the case of the index We conclude that any variational flux may be viewed as an (m —— 1)-form.

4.4 The Cauchy Stress Induced by a Piola—Kirchhofi' Stress

Consider the contraction vector bundle morphism

m

c: L(L(TL{, W)‚Ä(T*u)) (Du W —> L(T*u, /\(T*L1))

given by

C(Baw)(¢) = B(w ® ¢)
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for B E L(L(TL{,W),/\m(T*U)), w E W, and d) E T*L{‚ where (w ® gb)(v) : ¢(v)w. Locally, if B is

given by Bälmm then, c(B, w) is is represented by Bglmmw". Although this is an extension of the usual

notation we will still use ’UJJB for c(B,w).

Consider a section S+ of L(L (Tl/17 W) , Am(T*U)) and a vector field w. Then7 wJ 5+ is a variational flux

and iX1(w4 5+) E Am‘1(T*Z/{) is represented by

Z(—1)i“lS+:1mmwadw1/\.../\da:i/\.../\d9:m

i

where the summation over a is implied. We note that i;1(w_u 5+) depends on w linearly, so we have a

section a of L(W, Am_1(T*Z/I)) satisfying

0(w) = i;1(w_| 5+)

Locally a is represented by

cralujum = (—1)i—1S+ilmm (no sum over

We will use

m m—l

i„:L(L(TL1,W)‚/\(T*Z‚I)) —> L(W‚ /\ (T*u))

to denote the obviously linear injective mapping such that 0' : 2", o 5+.

We conclude that the mapping

m—l

i, 01*: L(J1(W)‚ /\(T*u)) —> L(W‚ /\ (T*u))

is a linear mapping (no longer injective) that gives a Cauchy stress to any given variational stress. Locally

it is given by

(xi; Salmmy H (xi: Ußl...i...m)

where ‚

0fl1„‚5___m : (—1)”'_1S'+:31mm (no sum over

5 The Divergence of a Variational Stress and the Principle of Virtual Power

5.1 The Divergence of a Variational Flux

Let s be a variational flux. We define the divergence div 3 of s to be the m—form defined by

div s : d(i;1

Using the same scheme of notation for the local representatives as before, we have

(div s)1_‚_mdx1/\.. .Adxm : d(Zi(—1)l_ls§mmdx1/\.“mg/LuAdxm)

: Zi(—1)i—1sämm‚jdaßj /\ dmlA . . . AdxiA . . . Admm

: sämmaidmlA . . . Adxm

as expected.
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5.2 The Divergence of a Variational Stress

For a given variational stress S and a generalized velocity w, consider the variational flux w.1I* (S) and

its divergence

div (wt I*(S)) = d(z';1(wi I*(S)))

given locally by

(5"a1...mw“)’ida:1/\.../\da:m : (Säan’iwa + Sälmmwg)dlli1/\. . .Adzm

Next, as S'(j1 (10)), is represented locally by

(Sa1.,.mwa + SÄ1„_mw‚°5)dx1A.../\dxm

the difference

le('lU.l I*(S)) — S(j1(w))

is represented locally by

( äan’i ‘ Sa1„_m)wad1‚'l/\ . . . Adz'm

From its local representation it is clear that div(wnI* — 501(10)) is linear in w, hence, there is

an element of L(W, Am(T*L{)) that gives this difference when it is evaluated on a section w. Thus7 we

define the generalized divergence of the variational stress S to be the section Div(S) of the vector bundle

L(W‚ Am(T*LI)) satisfying

Div(S)(w) = div(w.nI*(S)) - S(j1(w))

for every generalized velocity field w.

5.3 The Principle of Virtual Power

Consider the power expended by the variational stresses. Using the previous results we have

FEW) Z £30100»

2 fdiv(w_|I*(S)) — fDiv(S)(w)

B B

Since

div (ws 1* (5)) H d(i;1(w42*(S)))

= d(a(w))

where, a : z", o I‘“ (S) is the Cauchy stress induced by the variational stress 5, we may write the power

in the form

F3012) z /d(a(w)) — / Div(S)(w)

B B

We may use Stokes’ theorem on the first integral to obtain

raw) = f i2;(a(w>) — /Div(s>(w>

68 B
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where, i}; is the restriction of (m — 1)-forms on U to 68 so

m—1

1;, (a(w)) e /\ (T*öß)

We conclude that the force induced on B by the variational stress S is composed of a body force and a

surface force, i.e., it is of the form

F30») = /ßß(w> +/TB(1U)

B BB

where 75(w) = if; (6(10)) and Div S + [33 : 0.

5.4 Newton’s Law of Action and Reaction

Newton’s law of action and reaction, stating that 75(23) 2 ~ng if the bodies B and B’ are tangent

at x and lie on the other side of the common tangent space, follows in the classical case from the linear

dependence of the traction on the unit normal to the boundary. In the generalized theory of Cauchy

stresses reviewed above, Newton’s law is implied by the definition of the inclined restriction.

In the dependence of the surface force n; (w) = if; (a(w)) that we obtained from Stokes’ theorem, this

odd dependence is implicit because the value

i2“; (a(w)) (v1, . . . ,vm_1) = a(w)(v1, . . . ,vm_1)

for any collection of m — 1 vectors {111, . . . ,vm_1}, does not depend on B.

We recall that the assumed orientation on LI and the outwards pointing vectors defined on the boundary

of a body B determine a unique orientation on BB—an orientation for which {111, . . . ,vm_1} are posi-

tively oriented if for any outwards pointing vector v, the vectors {1), '01, . . . ,vm-1} are positively oriented

in U. The form if; (a(w)) gives the power with respect to this orientation on öB. If we reverse the

outwards pointing vectors, so we consider the body 8’ that is in contact with ß, the form fig, (a(w))

indeed does not change. However, its integral gives the power using the inverse orientation than the one

corresponding to ig(a(w)). The definition of the integral of a differential form implies that the results of

integration of the form if; (a(w)) over öB’ with its induced orientation will be of the opposite sign then the

integral over 88 with its induced orientation. Thus, the power density on 88’ is the inverse of that on 68.
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