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Involution and Constrained Dynamics III: Intrinsic Degrees of

Freedom Count

W. M. Seiler

The formal theory of differential equations is applied to constrained dynamics in order to give an intrinsic

definition of the number of degrees of freedom of a mechanical system or a field theory. We show how the

action of a gauge (pseudo) group can be easily taken into account by some purely formal and combinatorial

calculations. As a by—product we ez'hibit the connection between the Hilbert functions of two difierential

equations related by a differential relation.

1 Introduction

This is the third part in a series of articles (Seiler and Tucker, 1995; Seiler, I995a) devoted to the

application of the formal theory of differential equations in the context of constrained dynamics. It

continues the work described in the first part, correcting and clarifying some points concerning the count

of degrees of freedom. Finite- and infinite—dimensional systems are now treated in the same manner. In

addition, we give a completely intrinsic introduction into formal theory in contrast to the somewhat more

coordinate oriented presentation in the previous parts.

We will study in some detail the problem of counting the degrees of freedom of arbitrary mechanical

systems and field theories, respectively. We will not make any assumptions like the system possesses a

Lagrangian or Hamiltonian structure. Special emphasis will be put on the correct treatment of gauge

symmetries. Of course, this requires first some discussion of what we should understand by degrees of

freedom and by gauge symmetries.

We will take the fairly simple (but very effective) point of view of taking the size of the formal solution

space, i.e. the space of all formal power series solutions without consideration of their convergence,

as a measure for the number of degrees of freedom. With this approach we can avoid a number of

interpretation problems when we go beyond standard Lagrangian or Hamiltonian mechanics and it can

also handle constrained systems without any modification.

For finite—dimensional systems the size of the formal solution space can be readily measured by the number

of free parameters in the power series solution (we neglect here the possible existence of singular integrals

and count only the dimension of the general integral). For field theories this question becomes more

delicate, as their solution spaces are generally of infinite dimension. We apply ideas from Commutative

Algebra by introducing a Hilbert polynomial and define its leading coefficient as the number of degrees

of freedom. This is closely related to an approach proposed by Einstein (1955).

Gauge theories require some slight modifications. In such theories a group is acting on the solution space

and solutions lying in the same orbit are identified. In general, one is neither able to derive explicitly

reduced field equations for some gauge invariant fields nor to perform a full gauge fixing (i. e. to distinguish

exactly one solution in each orbit). We will show how one can nevertheless predict the size of the reduced

solution space by a simple formal manipulation of Hilbert functions provided the gauge symmetries are

represented as a Lie pseudogroup.

The article is organised as follows. The next section briefly reviews the basics of the formal theory of

differential equations with special emphasis on the notion of an involutive system. Sect. 3 introduces our

basic tools for measuring the size of the formal solution space: the Cartan characters and the Hilbert

function. Sect. 4 discusses Lie pseudogroups and the effect of gauge symmetries. In the following two

sections the theory is first applied to the finite—dimensional case, i. e. to particle mechanics, and then to

field theories. Finally, some conclusions are given in Sect. 7.
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2 The Formal Geometry of Differential Equations

The formal theory represents a powerful geometric framework for analysing differential equations based on

the jet bundle formalism (Saunders, 1989). In this article we can only briefly review some basic notions.

For more details we must refer to the literature, e. g. (Dubois—Violette, 1984; Pommaret, 1978; Seiler,

1994a). We use here an intrinsic coordinate—free approach; in (Seiler and Tucker, 1995) and references

therein it is described how the theory can be applied in concrete computations.

Let 7r : E —> B be a fibred manifold. Geometrically, the first order jet bundle 7r?) : J15 —> E can most

easily be described by saying that it is an afifine bundle and that its fibre over a point g : E 5 is

the following affine space

(J1£)g={’)/ET;B®T§€)TWO’yZldng} (1)

modelled on the vector space T53 ® V55. As J18 may again be considered as a fibred manifold over

8, we can iterate this construction. Higher order jet bundles are then obtained by identifying in an

obvious manner Jq+T£ with a subbundle of Jr(Jq£ For any q,r Z 0 they possess bundle structures

wg” : Jq+7a£ —> ch‘f where we set J05 = 6 and a structure as fibred manifold 7rq : L; —> B.

A section a : B ~—> E can be prolonged to a section 31(0) : B *9 J15 by j1(a)(3:) : (a(;c)‚Txcr). As above,

this construction can naturally be extended to higher order jet bundles. We define new a difi‘erential

equation (of order q) as a fibred submanifold Rq of 7rq : JqE —> B. A section 0' : U C B —> 5 is a (local)

solution of the equation Rq, if jg (0)(Z/{) C 7%.

There exist two natural geometric operations with a differential equation Rq: projection and prolongation.

The first one is inherited from the canonical projections between jet bundles of different order. If RH, is

an equation of order q+r, we define the projected equation of order q by R?) : 7r3+r(72q+,„). Conversely,

a qth order differential equation Rq can be prolonged to one of order q + r: ’qufl : JT(’Rq) n Jq+r5 (the

intersection is understood to take place in Jr(JqE In general, we cannot expect that either projection

or prolongation leads again to a fibred manifold. However, for simplicity, we will make this assumption

in the sequel, i. e. we restrict to so—called regular equations.

For our purposes, equations of the form RS,ng : «3::1'8(RHHS ), i. e. equations which were first prolonged

r + s times and then projected back s times, are especially important. Note that for r = O in general

72513) C Rq. This indicates the presence of integrability conditions. We call Rq formally integrable, if for

all r 2 0 the equality 72%}, = Rq-l—r' holds, i. e. at no order of prolongation integrability conditions occur.

The name stems from the fact that for such equations it is straight—forward to construct formal power

series solutions. Unfortunately, no finite criterion for formal integrability is known so far.

An important property of jet bundles is that 7r3_1 : chf —> Jq_1£ defines an afiine bundle modelled on

the vector bundle SqT*B (8 V5 with Sq denoting the symmetric product. This leads naturally to the

concept of the symbol of a differential equation. Let g E R4 C JqE; the symbol Mg of Rq is a family of

vector spaces over Ra with (Mq)5 = V§(q)Rq C VäqÜqE where ngjq£ : ker T§7T3_1 is the vertical space

with respect to the projection 7r:_1. We can thus identify the symbol with a subspace of SqT*B ® V5.

For simplicity, we will assume in the sequel that the symbol is not just a family of vector spaces but

actually a vector bundle over R4. Note that while our definition of a symbol is closely related to the

standard one in text books on differential equations, it is not the same! Written out in local coordinates,

our symbol corresponds to a much larger matrix; the classical (principal) symbol is obtained by a kind

of contraction with a one—form X E T*B.

Consider the map 6 : Sr+1T*ß —> T*B ® SrT*B defined by composition of the natural inclusion

ST+1T*B <—> T*B ® ®r T*B with the canonical projection T*B ® ®f T*B —> T*ß ® SrT*ß. By wedging

with A5T*B (the 3-fold exterior product of T*B) and tensoring with V5 we can extend 6 to a map

A5T*B ® Sr+1T*B (8) V5 —> As+1T*B ® STT*B (8) V5. This leads to the 6—sequences

O ——> STT*B® V5 —> T*B® Sr_1T*B (X) V6 —> ~~

——> AST*B ® ST_3T*B ® VS ——> n. —> AnT"B ® ST_„T*B (8) V8 —> O
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where we set SiT*B = O for i < 0 and where n = dimB. The so-called formal Poincare lemma states

that these sequences are exact for all r > 0.

The prolongation of a symbol Mq C SqT*B ® V5 can be directly computed as the intersection Mg.” 2

(SrT*B®Mq)I"I (Sq+‚.T*B® V5) (which is understood to take place in ®q+r T*B® VS). Setting Mi 2 0

for i < 0 and Mi 2 SiT*B (8) V5 for 0 S i < q the 6—sequence (2) can be restricted to a sequence

0 —> Mq+r —> ® Mg+r~1 —> ' ' ' —) ® McH—T—n '—) 0

which is still a complex but in general no longer exact. Its (bigraded) cohomology is called the Spencer

cohomology of the symbol Mg. We denote by H”(/\/lq) the cohomology group at AST"B ® ‚Mr and

define M4 to be involutive, if Hs’q+’"(Mq) = 0 holds for all 0 S s g n and all r 2 O. The differential

equation R4 is involutive, if it is formally integrable and if its symbol M4 is involutive.

It is important to note that all these constructions based on the symbol are to be understood pointwise

on Rq. In general, one must expect that the dimensions of the cohomology classes vary from point to

point and so it may happen that Rq is involutive at some points and not at other ones. Again we will

assume for simplicity that this does not happen.

lnvolutive equations share many special properties; e. g. in the analytic category a very general existence

and uniqueness theorem for (non—characteristic) initial value problems holds: the Carton-Khmer theorem.

According to the Carton—Kuronishi theorem any regular equation 7% either can be completed in a finite

number of prolongations and projections to an equivalent involutive equation R511“ or it is inconsistent.

Computational aspects of this completion and its implementation in a computer algebra system are

studied in (Schü et al., 1994); its relation to the classical constraint algorithm of Dirac is shown in (Seiler

and Tucker, 1995).

3 Cartan Characters and the Hilbert Function

Let {eh . . . ‚ en} be an ordered basis of TB. For a given symbol Mq we define for 1 g k g n the following

subspaces (again everything should be understood pointwise on Rq)

Mq‚k:{pEMq|p(6i,U1‚...‚’Uq_1):0, V15igk‚VU1,...‚vq_1€Tl3}

and Mm) = M4. We call the basis quasi—regular (for Mq), if

n-l

dim Mg+1 z Z dim Mch (5)

k:0

One can show that a symbol is involutive, if and only if quasi—regular bases exist for it. Given such a

basis for the involutive symbol Mg, we can compute its Carton characters a5,“ (for 1 5 k g n) as the

differences agk) : dim Mq‚k_1 — dim Mmk. They form a descending sequence

04511) 2 05512) Z 2 all") Z 0 (6)

We define the Hilbert function H (3) of the differential equation R4 as the number of arbitrary coefficients

of order s of the general formal power series solution of Rq. It is probably the most natural and useful

measure for the size of the formal solution space. If ’13., is involutive, the Hilbert function is polynomial for

s Z q and given by H(s) : dim/V18. One can derive a closed form expression for the Hilbert polynomial

in terms of the Cartan characters of Mq:

H(q+s)=:ozgk)<q;s), V520 (7)

k:1

For O < s < q the values of the Hilbert function can be computed as H (s) : dim qu—s) — dim REL—18+”

and H(0) = dim Réq). With a bit of combinatorics one can express H as given by (7) explicitly as a
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polynomial in s. Conversely, if the Hilbert polynomial is given in the explicit form H(q+ s) : ZZZ—01 hisi,

the corresponding Cartan characters agk) are determined by the recurrence relation

n

(k — 1)! -_1 .

i:k+1

with the modified Stirling numbers 353') z off) (1, 2, . . . , j) where 0,?) denotes the elementary symmetric

polynomial of degree It in j variables. Note that (8) depends indirectly on the order q of the differential

equation, since we start with H(q + 3) written as polynomial in 5.

As intrinsically defined objects the Cartan characters as,“ and the Hilbert function H (s) are of course

invariant under arbitrary changes of coordinates in E. For more general transformations —— like rewriting

a higher order system as a first order one 7 this is not necessarily the case. We exhibit now for two

differential equations connected by a differential relation a simple equation for their Hilbert polynomials.

Let 7r : E —> B and 7T- : 5 —> B be two fibred manifolds over the same base manifold B. We define

a differential relation between E and 5 as a submanifold TM C JTE X JFE such that 72,5 is a fibred

submanifold with respect to the two fibrations induced by 7T and Fr, namely Fr’" >< id : ‚77.5 >< JFE —> B >< J75

and id >< 7TF : JTE >< JFE —> JTE >< ß. This allows us for a given section 0' : B —> 6 to consider "5—.[0] =

7}”: n (jTU(B) >< J55) as a differential equation in J75 and similarly for a section ä : B —> 5 to consider

7;[&] = 72,7: n (.775 X j;ä(B)) as a differential equation in JTS.

Now let 7% C ch‘f and 7% C Jq—E be two differential equations. We say that they are difierentially related

via "Haj, if the following condition is satisfied. If the section 0' is a solution of 7%, then every solution

of ‘7}[0] is also a solution of 7%, and conversely if ä is a solution of 7%, then every solution of 7—46] is

also a solution of 7%. One may consider this as a very general form of Backlund transformations. For

simplicity, we assume that all differential equations involved are involutive.

Denote by H(s) the Hilbert function of 7% and by H(s) the one of 7%. For Tm: we can introduce two

Hilbert functions G(s) and @(s); in the first case it is considered as a differential equation 7;.[&] C JTE,

in the latter one as an equation 7,:[0] C Jig (assuming that the Hilbert functions are independent of a

and ä). If 727,: is a differential relation between 7% and 7%7 the four Hilbert polynomials satisfy

H(s)—G(s):H(s+F—F)—Ö(s+F-F) (9)

Note that in general this equation holds only for the Hilbert polynomials and not for the full Hilbert

functions, i. e. it holds only, if all arguments are greater than or equal to max {r, F}.

This can be seen as follows. The general formal power series solution of 7% is parametrised at order s by

H (s) Taylor coefficients. To each solution 0' of 7% there corresponds via the differential relation TM a

family of solutions of 7% parametrised at order s by 0(3) coefficients. However, each of these solutions

of 7% can be obtained not only by starting with a but also by starting with any solution in a whole

family parameterised at order s by G(s) coefficients (obtained by applying 773,—. “backwards”). Since for

s 2 max {F‚F} a coefficient of a of order 5 corresponds via TM to coefficients of order s + F — r, the

general formal power series solution of 7% is parameterised by H(5 + F — r) = H(s) — G(8) + C(s + F — F)

Taylor coefficients of order s + F — F.

For lower values of s (9) does not need to hold. This is due to the fact that then in general we cannot

say that the coeflicients of a of order s are related to coefficients of ä of order s + F — F. We only know

that the coefficients of 0' up to order r correspond to the coefficients of ä up to order F. Only when 72.7;

has a special form, we may be able to make Stronger statements. Especially, if both 7746] and T,—.[o] are

of Cauchy—Kowalevsky form, (9) holds for the full Hilbert functions.

An important special case is G (:9) = 0(3 + F — F). In this case there exists a one-to—one correspondence

between solutions of 7% and 7% and their Hilbert polynomials are related by a simple ishift of the

argument. This happens for example for the classical Backlund transformations. If H(s) : H(s + F — r),

there also exists a simple relation between the Cartan characters am and (357k) of 7% and 7%, respectively.

If F Z r, the org—k) coincide with the characters of the (F — F)—f01d prolongation of 7%. Otherwise, the task)
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coincide with the characters of the (r — F)—fold prolongation of 7%.

Under prolongations the highest non-vanishing Cartan character a5“) (i.e. agk) = O for k > kg and

(k)

q"

erg—k) = 0 for all k > kg and (15,“) = agko). Thus for all differential equations with identical Hilbert

) (ko)

a9”) aß 0) remains unchanged: if a are the Cartan characters of the prolongation R5 for q— > (1, then

polynomials, kg and agko are equal. We call or the index of generality of Rq and kg its Carton genus.

4 Gauge Symmetries

An important aspect of counting degrees of freedom is to take into account the effect of gauge symmetries.

They lead to a reduction of the number of degrees of freedom, as one identifies solutions related by a

gauge transformation or, more precisely, such solutions are considered as representing the same physical

state. Thus gauge symmetries are a matter of physical interpretation; for arbitrary equations of motion

there exists no mathematical criterion which tells us when a symmetry should be “promoted” to a gauge

symmetry (the situation is somewhat different, if we restrict to Lagrangian or Hamiltonian systems).

We will therefore assume in the sequel that we know already the gauge symmetries and treat only the

problem of computing the corresponding correction of the number of degrees of freedom. In fact, this is

the common situation in most physical applications.

(Seiler, 1994b) and (Seller, 1995b) present already solutions to this problem. There it is assumed that

the gauge symmetries are given in the form of explicit transformations. While this is the usual form in

physics, it is rather cumbersome from a mathematical point of view. One problem is that the action of

the gauge group may not be effective. In addition, a number of artificial assumptions has to be made

about the dependence of the transformation on the gauge functions or parameter.

In this article we will instead assume that the gauge symmetries are given in the form of a Lie pseudogroup

(Pornmaret, 1978), i. e. in form of a differential equation. This allows us to apply the same techniques to

determine the size of the group (independent of whether or not its action is effective) and of the formal

solution space of the field equations. In this approach the gauge correction becomes a simple subtraction

of Hilbert functions very similar to (9).

Let 6 be an arbitrary manifold. Symmetry transformations are diffeomorphisms E -—> 6 or alternatively

sections of the trivial bundle pr1 : 6 >< 5 ——> 5 where pr1 denotes the source projection on the first factor.

Taking the latter point of view, we can build jet bundles J7.(£ X 5) over this bundle; the jets of invertible

maps define an open subbundle IT(€ X 5). This allows us to represent transformations as solutions of

differential equations.

We define now a Lie pseudogroup as a differential equation 9,. C 1,.(6 >< E) (often called a finite Lie

equation) satisfying the following two conditions which correspond to the classical axioms of a (local)

group: if the sections a : U C E —) 5 and 7' : V C 5 —> 6 are two (local) solutions of Q, with

0(U) n V aß Q), then the section 7' o a : 0(U) n V —> E is also a (local) solution of 97.; (ii) the same holds

for the section 0—1 : 0(a) —> (1.

In our case 8 is not an arbitrary manifold but the total space of a fibred manifold 7r : E —> B. A gauge

transformation preserves the fibration, i. e. it factors through 7T. We will further assume that the induced

mapping on B is the identity. Given a differential equation 73,, C Jag, such a transformation is called a

symmetry, if it maps solutions of R4 again into solutions.

Let H(s) be the Hilbert function of Rq and let Q. be a Lie pseudogroup of gauge symmetries with Hilbert

function G Assume that we were able to perform a complete gauge fixing, i. e. to derive a differential

equation 7% such that any solution of 7% is also a solution of R4, but that of each orbit of the gauge

pseudogroup in the solution space of R4 precisely one solution is also a solution of 7%. Locally, this is

(in principle) always possible. We show now by an argument very similar to the proof of (9) that the

Hilbert function 151(3) of the gauge fixed equation 7%,,— is given by

H(s) = He) — G(s)
(10)

If we expand the general solution of Rq in a formal power series, the value H(s) of the Hilbert function
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tells the number of arbitrary Taylor coefficients of order 3. On the other hand, 0(3) equals the number

of coefficients of order s that can be given arbitrary values via gauge transformations. Thus modulo this

gauge freedom only H(s) arbitrary coefficients remain. In contrast to the last section, (10) holds for the

full Hilbert functions and not just for the Hilbert polynomials.

5 Particle Mechanics

We use here the term “particle mechanics” somewhat loosely as an abbreviation for finite—dimensional

systems. In this case the base manifold B is one—dimensional and represents the time (or more generally

some evolution parameter). In many applications the total space 5 will be of the simple form 5 : B x Q

where Q denotes either the classical configuration space or the phase space of the system, i. e. some m-

dimensional manifold. The former case corresponds to Lagrangian mechanics where one is dealing with

some differential equation 72.21, C .1ng for a Lagrangian of order k; the latter case appears in Hamiltonian

mechanics where one studies a first order equation R1 C J15.

Completion to involution takes here a particular simple form, as the symbol of an ordinary differential

equation is always involutive. It amounts simply to checking whether prolonging lower order equations

yields some new equations (this is equivalent to the tangency condition in the classical approaches based on

vector fields). Note that there is absolutely no difference whether we complete Lagrangian or Hamiltonian,

holonomic or anholonomic, first or higher order systems etc.

For a mechanical system without gauge symmetry one expects that the Cartan character vanishes. Oth—

erwise the system is underdetermined which in general makes sense only if the indeterminacy stems from

a gauge symmetry. If 73., is an involutive equation of motion with vanishing Cartan character, we define

the number N of degrees of freedom by the simple formula

N = diqu (11)

N counts the number of independent conditions that can be imposed on the equation of motion, as under

the made assumptions we have in the general formal power series solution dim Rq Taylor coefficients that

are undetermined by the differential equation and must be prescribed by initial or boundary conditions.

If one applies (11) to a simple system like a pendulum, one obtains double the number of degrees of

freedom than in the classical approach, as we treat position and velocity (or momentum, respectively)

as separate degrees of freedom. If a natural “pairing” of the coordinates exists (in the case of higher

order Lagrangians such a “pair” might consist of more than two coordinates), one can divide in (11) by

the corresponding factor. Note, however, that the abstract theory cannot guarantee that the result of

the division will be integral. This remains to be shown for the specific formalism one uses. A classical

example for such a proof appears in the Dirac theory where one can easily show that there is always an

even number of second class constraints (Dirac, 1950).

Besides this problem of obtaining an integral number of degrees of freedom, our main reason for counting

positions and velocities separately is that this avoids interpretation problems in the treatment of more

general systems like those subject to anholonomic constraints or systems described by Lagrangians linear

in the velocities (or more generally the highest order derivatives). In the first case, one typically still

has a natural pairing of position and velocity coordinates, but the constraints affect only the velocities.

Thus it is not clear how the constraints should be subtracted. In the second case, the Euler—Lagrange

equations are of lower order than in the generic case. Insisting on a pairing excludes the use of simpler

approaches like the Faddeev—Jackiw formalism (Seiler, 1995a).

If the equations of motion form an underdetermined system, the gauge group should have precisely the

same Hilbert polynomial as the equations of motion, i. e. the reduced Hilbert polynomial H(3) introduced

in the last section must vanish. Let now Rq be the equation of motion, completed to involution, and g,

the gauge pseudogroup, also completed to involution. If s : max {q, r}, then we obtain for the number N

of degrees of freedom

N : dimRs — dim gs
(12)

Often a mechanical system can be modelled in many different ways leading to very different equations
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of motion. However, if the various models are consistent, their solution spaces must be in one-to-one

correspondence (after subtracting gauge symmetries). The results at the end of Sect. 3 ensure that our

definition yields always the same number of degrees of freedom.

As an example we study a simple three-dimensional system due to Vladimir Gerdt (private communi—

cation) where the formula in (Seiler and Tucker, 1995) gives a wrong result. The error can be best

explained in the language of the Dirac theory (Dirac, 1950): the effect of secondary first class constraints

was ignored, as the gauge correction was solely based on the Cartan character counting only the primary

first class constraints (only these correspond to arbitrary functions in the gauge transformations). The

approach via pseudogroups avoids this problem. It also does not matter whether we use the Lagrangian

or the Hamiltonian framework, so for simplicity we perform our computations on the Lagrangian side.

The system is defined by the Lagrangian L : q1(q2 — q3) — r11 q2 which is linear in the velocities. lts

Euler—Lagrange equations form an involutive first order system

‚ 2d2—q3207 (11:07

R1-{ (11:0 ( )

For s 2 1 the Hilbert function is given by H(s) : 1 and H(0) : dim R81) 2 2.

The Lagrangian L is invariant (up to a total derivative) under gauge transformations of the form ii = q1,

(jg = qg + ä?) and (jg 2 q3 +77 where 77 : n(t) is an arbitrary function. This pseudogroup can be described

as the solution space of the following involutive Lie equation

59i r' 391 852 1 _

——:07 —:—(Q3—(137

g, z 8g,- öt öt 2 ) (14)

Öl 2 Q1

For s Z 1 the Hilbert function is G(s) = 1 (thus as expected identical to the one of the equations of

motion) and G(O) : dim 951) : 2. Since dim (31 = dim R1 : 3, we see that this dynamical system

possesses no degrees of freedom. The same result can be obtained within the classical Dirac theory where

one finds three first class constraints only one of which is primary. This reflects the fact that the gauge

transformations depend on only one arbitrary function 17.

6 Field Theories

Now we proceed to the case that the base manifold B is of higher dimension, say n. In physical applica—

tions, 13’ will typically represent space—time. Very often, 7r : E ——> B will be a vector or a tensor bundle;

however, we do not need this additional Structure for our purposes. As explained in detail in (Seiler and

Tucker, 1995), the naive generalisation of the Dirac algorithm often used in the physics literature does

in general not suffice for a consistency check of the field equations. Only a full completion to involution

provides such a check and thus a valid constraint algorithm.

Without loss of generality we may assume that (after completion to involution) the field equations form

a first order system. For such systems the Cartan-Kahler theorem yields a direct interpretation of the

Cartan characters a?” as the number of arbitrary functions which can be prescribed as initial condi—

tions. Namely, we can prescribe avg”) functions depending on n arguments and or?) ~ erg/6+1) functions

of k arguments for 1 S k < n. This implies that the field equations are underdetermined, if and only

if a5") > 0, as then some fields are completely unconstrained by the field equations and can be chosen

arbitrarily. Again we expect this to happen only for systems where a gauge symmetry is the reason for

the indeterminacy.

In field theories one typically considers as a degree of freedom a field for which one can prescribe initial

values on an — 1)-dimensional Cauchy surface E. If we can choose for TB a quasi—regular basis

{61, . . .,e„} where 6,, is transversal to 2, the surface E is non-characteristic and there exist exactly

agn—l) such fields for a not underdetermined system. This leads naturally to the following definition: for
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an involutive field equation Rq without gauge symmetries the number N of degrees of freedom is

N : agn—l)

For a system with gauge symmetries we cannot directly use (15); we must first introduce reduced or

gauge corrected Cartan characters Etfjk). They are associated with the reduced Hilbert polynomial H(s)

defined by (10) and measure the size of the reduced solution space obtained by quotienting by the gauge

pseudogroup. So it is natural to define for the number N of true degrees of freedom

Again it follows from the results at the end of Sect. 3 that any alternative formulation of the field theory

will lead to the same value N and that it does not matter what value we take for q. Especially, if it

is possible to find a complete set of gauge invariant fields and to rewrite the field equations in terms of

these, one Will obtain N as the index of generality of the new equations and up to a shift of the argument

H(s) as their Hilbert function.

This approach to counting degrees of freedom is closely related to some concepts developed in an appendix

of (Einstein, 1955). Einstein discussed this problem already much earlier with Cartan in a number of

letters (Cartan and Einstein, 1979) Where Cartan outlined his theory of involutive systems. For some

reasons Einstein apparently never used this theory but instead published much later an approach of

his own. He introduced a compatibility coeflicient Zlo) and for compatible systems, i.e. systems with

Z(0) = 0, the strength Z (1) which he considered as a measure for the size of the solution space. It was

shown in (Seiler, 1994b) that these quantities are related to the gauge corrected Cartan characters by

the relations

1 _,
Z(0) : 61577;), Z(1) = (n __ 1) (Ema?) + ägn J)

(17)

Thus a compatible system is just a system which, after subtraction of the gauge symmetry, is not under—

determined (6457") = 0) and its strength corresponds up to the numerical factor n — 1 determined by the

dimension n of space—time to our number N of degrees of freedom.

In practice, it is usually easier and less error prone to determine the reduced Cartan characters than to

compute directly the strength in the formalism of Einstein. His approach requires a careful and non—trivial

counting of all “identities” between the field equations and “identities of the identities” etc. (for some

concrete calculations see e. g. (Siklos, 1996) and references therein). In the literature one can find several

cases where mistakes were made. In the formal theory the number of all these identities are encoded in

the Cartan characters which are trivial to determine for an involutive symbol.

As a simple example we treat the U(1)—Yang—Mills theory where Maxwell’s equations represent a gauge

invariant form. In (Seiler, 1994b) Hilbert function and Cartan characters for both theories are determined

(our proof that the Yang—Mills equations are involutive and our computation of the Cartan characters

were performed in local coordinates; for an example of a more intrinsic approach see (Giachetti and Man-

giarotti, 1996)). In a four-dimensional space—time the Hilbert function of the U(1)—Yang-Mills equations

(a second order involutive system) is given by

73 9. 19
HYM(0) = 4, HYM(1) z 16, HYM(2 +7“) = 36 + Er + 5M + Er” (18)

The gauge transformation Ä = A + dA are the solutions of the following finite Lie equation

   

‚ ' 8441,, öÄV __ 8/1,, V

91 I { 6x” ~ 85c“ n 7 8A,, :6“ (19)

91 is already involutive and has the Hilbert function

37 5. 19
10, G(2+r):20+§r+§rl+gr° (20)

Q ä

H ‚
J
;

Q E II

In order to correct for the gauge freedom we must subtract the two Hilbert functions (18) and (20) and
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obtain the reduced Hilbert functiOn HYM(0) z 0, HYMa) z 6 and HyM(2+s) = 30+ 165+2s‘2. Applying

(8) to it yields

aYM=07 a$t=4i éft=a$ii=6 (21)

so that we can conclude that the theory has four degrees of freedom.

Up to a shift HYM (s) is precisely the Hilbert function of Maxwell’s equations. This is not surprising in the

light of our previous results: the field strength F and the vector potential A are connected by a differential

relation in the sense of Sect. 3. Taking the Yang—Mills equations as R2 and Maxwell’s equations as R1,

the equation F : dA defines a relation 71,0. Associated with this relation are the two Hilbeth functions

3(5) 2 0 and G(5) as given by (20). Thus (9) yields HMax(s - 1) 2 HYM(5) — G(s) 2 HYM(3). In

this example this holds even for the full Hilbert functions, as Tm is in both directions normal, i. e. of

Cauchy—Kowalevsky type.

7 Conclusion

We have shown that the formal theory of differential equations provides a natural framework for counting

degrees of freedom. Using a pseudogroup approach the correction for gauge symmetries becomes a trivial

subtraction of Hilbert functions. Our definition is completely independent of any specific formalism for

setting up the equations of motion or the field equations, respectively, and can thus be applied to any

kind of mechanical system or field theory.

For field theories one may wonder why only the index of generality is used. After all, the lower Cartan

characters also measure some freedom in the general solution, as one can see in the Cartan—Kahler

theorem. So for a full comparison of the size of the solution spaces of two different field theories (the

application Einstein had in mind when introducing the strength) one should look at the Hilbert function.

One obvious reason for the use of the index of generality lies in the results of Sect. 3 where we have shown

that it remains invariant even under very general transformations.

Siklos (1996) discussed the degrees of freedom count for various formulations of Einstein’s equations based

on different fields (metric, connection or curvature). For each case he performed a new count of Taylor

coefficients. In our approach, it would suffice to analyse the relation between, say, connection and metric

as described in Sect. 3 (which is usually easier than to analyse each time the full Einstein equations); the

relation between the Hilbert polynomials is then given by

In this article we always assumed that the gauge pseudogroup was known. This is the typical situa—

tion in concrete applications where usually the Lagrangians are constructed so that they possess certain

gauge symmetries. As already mentioned above the identification of gauge symmetries is in general to a

large extent a question of physical interpretation and not of mathematics. The situation is different for

Lagrangian and Hamiltonian systems where one can explicitly derive the (infinitesimal) gauge transfor—

mations (see e. g. (Henneaux et al., 1990)). It would be useful to be able to directly obtain them in form

of Lie equations, as otherwise the Lie equations must first be determined via a tedious elimination of the

gauge parameters.
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