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Gauge Momentum Map and Spatial Control of Extended Objects

J. Sniatycki

Equations of motion for a system with a free and proper action of a symmetry group on the configuration

space decompose into the shape space equations, gauge momentum equations and reconstruction equations.

The reconstruction equations do not depend on the shape space momenta. This allows for a control in

the group space in terms of controlforces acting in the shape space.

1 Introduction

The best example of the problem of a directional control of extended objects is provided by the ability of

cats to twist in a fall so that they land on their paws. Its mechanics has been studied by Kane (1969). A

comprehensive exposition in terms of the symmetry group of the system and the corresponding geometric

phases can be found in Montgomery (1989). See also Marsden (1992). The geometric phases appear

when one lifts the reduced motion to the full phase space by solving the reconstruction equations.

I got interested in this subject when, in a recent work with Richard Cushman (Cushman and Sniatycki,

1999), we discovered gauge momentum map and the corresponding splitting of the reduced equations

of motion into non—autonomous Hamiltonian equations in the cotangent bundle of the shape space and

autonomous gauge momentum equations.

2 Setting

We consider here a Hamiltonian system with configuration space Q, phase space T*Q and Hamiltonian

of the form H = K +7röV, where K : T*Q —> R is the kinetic energy, V : Q —> IR is the potential energy,

and fig) : T*Q ——> Q is the cotangent bundle projection. The kinetic energy K determines a Riemannian

metric k on Q such that

1 *

K07) = 516 (17,10)

where 16* is the induced metric on the fibres of the cotangent bundle projection 7rQ : T*Q —> Q.

We assume that the symmetry group ofour Hamiltonian system is a Lie group G acting properly and

freely on the configuration space Q. This implies that Q is the total space of a principal bundle with

structure group G and projection 7r : Q —> M. Since the lifted action of G lifted to T*Q is a symmetry of

our Hamiltonian H, the kinetic and potential energy are G—invariant. Therefore the Riemannian metric

k on Q is G—invariant.

The tangent bundle TQ of Q can be decomposed into the vertical distribution

verTQ = ker T7r

and the horizontal distribution defined as the k—orthogonal complement of verTQ,

horTQ = (verTQ)J‘

Both distributions are G-invariant, and verTQ GaborTQ : TQ. Hence, the horizontal distribution horTQ

is a connection in the principal bundle 7T : Q —> M.
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3 Decomposition of the Reduced Space

The reduced space of the system is the space (T*Q)/G of G—orbits in T*Q. We denote by p : T*Q —>

(T*Q) /G be the orbit map. The reduced phase space has the structure of a fibre bundle over M isomorphic

to the direct sum of the coadjoint bundle Q[g*] and the cotangent bundle T*M over M :

(T*Q)/G = QM] EBM TM

The Hamiltonian H on T*Q gives rise to functions HA be a function on T*M and Hp function on Q[g*I

such that H : VHF + A*HA. For every y E TgM,

Hm) = imam/u) + was)

where g* is the metric on the fibres of T*M induced by the G—invariant Riemannian metric k on Q.

Similarly, for each T E Q[g*]z

Hm) = grow)

where It" is the metric on the fibres of Q[g*] —> M induced by k.

Let 0.; be the canonical symplectic form on T*Q. vector field XH on (T*Q,w) corresponding to the

Hamiltonian H is defined by

XHJLU 2

Since wQ ad H are G—invariant7 so is XH. Thus it projects to a vector field p*X on the reduced phase

space (T*Q)/G. The Hamiltonian equations of motion decompose into the reduced equations describing

p*X and the reconstruction equations describing the lift to T*Q of the integral curves of th.

4 Gauge Momentum Map

The group Aut(Q) of automorphisms of the principal bundle Q consists of diffeomorphisrns of Q which

commute With the action of G. It is an infinite dimensional Lie group7 usually called the gauge group

of the theory. For the purpose of this lecture we need not be concerned with details of the topology of

Aut(Q). It suffices to observe that the Lie algebra aut(Q) of Aut(Q) consists of G—invariant vector fields

X on Q tangent to the fibres of the principal bundle projection 7|- : Q —> M. It is isomorphic to the space

of sections of the adjoint bundle QIg] —> M.

The action of Aut(Q) on Q lifts a Hamiltonian action on T*Q. For each X in aut(Q), the action of the

one parameter group exp tX on T*Q is given by the flow of the Hamiltonian vector field of a function

JX, which we call the gauge momentum associated to X. Since the Lie algebra aut(Q) is isomorphic to

the space of sections of the adjoint bundle QIQ’] —> M ‚ it follows that its dual (aut(Q))* is a space of

distributions. The momentum map j : T*Q —> (aut(Q))’k for the action of Aut(Q) on T*Q is defined by

jX : (j I X). Here the pairing ( I ) is to be understood in the sense of distributions.

Let F be the map from T*Q to the coadjoint bundle Q[g*] formed from the composition of the projection

T*Q —> verT*Q, the reduction map verT*Q —> (verT*Q) /G followed by the bundle isomorphism of

(verT*Q)/G onto Q[g*]. For each X in aut(Q),

JX = (F I (X)

where (X is a section of the adjoint bundle QIQI —> M corresponding to X and the pairing I is taken

pointwise. We call F the gauge momentum map for the action of Aut(Q) on T*Q.
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5 Decomposition of Equations of Motion

Let A : T*Q —> T*M be the map formed from composition of the projection T*Q —> horT*Q and

reduction map p : horT*Q —) (horT*Q)/G followed by the bundle isomorphism of (horT*Q)/G’ with

T*M.

Let t r—) p(t) be an integral curve of XH, t H 7(t) : F(p(t)) its projection to Q[g*], t »—> y(t) : A(p(t))

its projection to T*M‚ and t v—> sc(t) : 7T(’)/(t)) its projection to M. We denote by 0' : a:(t) v—-> 7(t) the

section of 7r : Q[g*] I—-> M along the curve t I—-> a:(t) such a(:c(t)) = 7(15). The equations of motion Split as

follows.

Shape phase space equations

yJwM = —y4 («7W <7 | +y_IdHA + e

where

o wM is the canonical symplectic form of T*M.

o Ö is the 2— form on M with values in the fibres of Q[g] induced by the curvature form Q of the

connection horTQ on Q. The term (7734 <7 | is a gauge momentum dependent magnetic term.

I 9 is a gauge momentum dependent 1—form (generalized force).

Gauge momentum equations

Via : Tl‘(w22(verdH1~))

where

0 V is the covariant derivative operator on sections of Q[g*] —> M corresponding to the connection

horTQ.

o The right hand side depends only on 7(15) : U(:c(t)) and not on That is the gauge momentum

eqautions decouple from the shape phase space equations

Reconstruction equations

In a trivialization

G X 9* —>T*G : (C’‚a) HTLCa

where LC is the left translation by C E G, the reconstruction equations read

0' 2 new” + Ado—1 (149933)}

where

A

o A : Til/I —> g is a trivialization representation of the connection form on Q.

o It should be noted that the reconstruction equations decouple from the shape phase space equations.
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6 Application to Control

Given a curve t i—> 33(t) in the shape space M, the gauge momentum equations determine its lifts t »—> 7(t)

to Q[g*]. If t i—> 7(15) is given, the reconstruction equations determine the lift t »—> q(t) of t H a:(t) to a

curve in Q.

The decomposition of equations of motion given here is also valid in the presence of additional time

dependent generalized forces F acting on the system, providing that

o the generalized forces are invariant under the action of the group G,

o the work of generalized forces on virtual displacements tangent to G—orbits vanishes.

The first condition implies that G is a symmetry group of the system. The second condition implies

conservation of the equivariant momentum map J 2 T*Q —> 9* corresponding to the action of G on T*Q.

Under these conditions the generalized forces push forward by A to a 1—form FA on T*M. In other words

F = A*FA

The form FA appears on the right hand side of the shape phase space equations. The gauge momentum

equations and the reconstruction equations remain unchanged.

The generalized forces F = A*FA can serve the role of control forces used to determine a trajectory in

the shape space M. Its lift to a curve in Q may give rise to a required change of orientation of the system.

7 Extended Objects

Let B C R3 be a compact co—dimension zero submanifold with boundary. It describes the reference

configuration of our extended object. Configurations of the body are described by embeddings q : B —> R3.

Since we are interested only in the orientation of the body in space, the configurations under consideration

map the centre of mass of the body to the origin. If we denote by p a positive smooth function on B

describing the mass distribution in the body, the condition that the centre of mass is at the origin reads

/ qu3b = O

B

where dgb is the Lebesgue measure on B given by its original embedding into N. The total mass of the

body is

mz/pd3b>0

B

The embeddings q : B —> R3 considered here are of Sobolev class Hk, k Z 3. It ensures that q and its

derivatives up to the order k — 2 are continuous.

The actual configuration space of an extended system is a closed submanifold QC of the extended config—

uration space

Q={(q=B—>R3)€Hkl/qud3b=0} <1)

The conditions specifying the Qc are given by the constitutive law of the system. If we do not know the

exact constitutive law for our extended system, we can work with the extended configuration space Q.

The conclusions about the actual system can be discussed in terms of assumptions about the constitutive

law.

The space Q given by (1) is a smooth manifold modeled on a Hilbert space. For each embedding q E Q,

a tangent vector in TqQ is a mapping u : B —> R3 of Sobolev class Hk such that fB updgb : O.
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We denote by T*Q the LQ-cotangent bundle space of Q. For each q e Q, the space Tq*Q consists of Hk

maps p : B ——> R3 such that fB ppdgb : 0. The evaluation map is

TJQ >< mews» H (p I u> = /B(p-u>d3b <2)

where the dot - denotes the dot product in R3. In other words7 for every b E B, (p - = p(b) is

the dot product of p(b) and u(b).

The kinetic energy metric k on Q is

k(u,v) z / u - 'Updgb (3)

B

Since p is strictly positive on B, for each q 6 Q7 the map kb : TqQ —> TJQ : u i—> kbu such that

(kbu l 11> = k(u,v) V v e TqQ, is an isomorphism. Eqs. ('2) and yield

kb(u) = pu

The inverse of kb is denoted by kt1 : T*Q —> TQ. For each p E T*Q,

kW) = p’lp

We have The pull—back of the kinetic energy metric k by kfl yields a metric k* on T*Q. In other words,

k*( 719’) =/p'p'p_1d3b
B

The kinetic energy K : T*Q —> R of the system is

1 *

K<p> = 5k (m)

The [lg—cotangent bundle space T*Q is weakly symplectic. Let 7rQ : T*Q ——> Q be the cotangent bundle

projection. The canonical 1—form 6 of T*Q is given by

(00171?) W) = (p | TTFQ (111))

for each w E T(q7p)T*Q. The symplectic form is w : —d6.

The action of the connected component G of 80(3) on R3 yields an action G x Q ——> Q : (C, q) »—> C’q,

where (Cq)(b) 2 C'q(b) for every b E B. This action of G on Q is free and proper. Hence, the orbit space

M : Q/G is a manifold, and Q has the structure of a principal bundle over M With structure group G,

and the projection map 7T : Q —> M. The base space M is called the shape space of the body [Shapere

and Wilczek].

The Lie algebra so(3) of 80(3) consists of skew symmetric matrices. To each f e s0(3) the infinitesimal

action of f on 1R3 is given by the matrix multiplication z >—> Ez for each 2 E R3. The fundamental vector

field X5 corresponding to f E so(3) is given by

X501) = €61 (4)

The lift of the action of G on Q to T*Q is given by

G X T*Q —> T*Q I (0)0171)» H (CquH)

It is a Hamiltonian action on T*Q with the equivariant momentum map J : T*Q ——> so(3)* such that, for

every 6 e so(3),

um» I e = (p I X501» = [Boa - gq>d3b
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Hence,

J(q‚p) = / (q /\ p)d3b

B

where q /\ p = (X) p — p (X) q). For each (q,p) E T*Q, J(q,p) is the usual angular momentum of the

system in the state (q, p).

The kinetic energy metric k is G-invariant. Hence, the distribution horTQ on Q, perpendicular to

ker T77 C TQ with respect to the kinetic energy metric k, is G—invariant and it is a connection in the

principal bundle Q. A vector u E TqQ is in horTQ if, for all 5 E 50(3),

k<u,Xg(q)) = /B<u - 59)!)dsb = o

This is equivalent to fB(q /\ pu)d3b : 0. Hence, u E TqQ is horizontal if and only (q, pu) E J‘1(0).

As in Marsden (1992), for each q E Q, we introduce the map ll(q) : so(3) —> so(3)* as follows. For each

57C 6 30(3),

(Helm C) = k(X:(q)‚Xc ((1)) (5)

Eqs. and (4) yield

<H<q>s|<> = /}BX{(q)"X<(Q)pd3b:/B(GQ)"(00100131)

(gong) = —cr (5%))

where

1(a) =/ q®qu3b

B

is the inertia tensor of the body. Since p is positive, the principal moments of inertia of I (q) are positive.

Hence, ll(q) is invertible for every q E Q. It is called the locked inertia tensor. For each C E 80(3),

Mag) : Adg-.i(q)AdC-1

Let a be the so(3)—valued form on Q given by

Cy(qau) = H((1)‘1J(q‚k"u) = H(g)_1J(q‚/Ju) (6)

For each g; E so(3),

<H(q)a(q,Xa(q)) IC) = (11(q)€ I C)

Hence,

a(q‚Xg(q)) : E V q E Q and 6 E 80(3)

Moreover, for every u E horTqQ and (p E so(3)*
)

H«a I a(q‚u>> (go |H(q)‘1J(q,kbu)) = (Jam) |H(q)‘1so)

/B(W~(H(IJ)‘190)(1)d3b = Mu. MUN—1.9m» z oH

since horTQ is k—orthogonal to all fundamental vector fields. Hence a is the connection form of the

connection horTQ.
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8 Collective Property of Reconstruction

Let t »—> q(t) be a curve in Q and t I—> 7r(q(t)) its projection to the shape space M. The horizontal lift

oft »—> 7r(q(t)) to Q is a curve of the form t »—> C(t)q(t) such that the tangent vector C(t)q(t) + C(t)cj(t)

is horizontal, that is, a(C (t)q(t)‚ C (t)q(t) + C(t)rj(t)) = O. It follows from the properties of a connection

that the reconstruction equation reads

WM) = H(61)‘1J(q‚pu)

it follows that in order to solve the reconstruction equation we need only to know the curve H(q(t))—1J(q(t)‚

MW)

in the Lie algebra of 80(3). That is, it suflices to know how the inertia tensor I the angular momentum

J vary with t. The details of the dynamics of the extended object are not important. Hence, we can

replace the actual dynamics of the extended object by a simple model.

9 A Model

We consider a simplified model consisting of two axially symmetric rigid bodies attached by a universal

joint at the origin of a Cartesian coordinate system. We assume that the joint is placed at the centre of

mass of the combined system (this corresponds to the limit when the mass of the point of the joint goes

to infinity).

The principal moments of inertia of one body are 7?, f, 1;, and the corresponding moments of inertia are

[95,111,12 = [1. The tensor of inertia of the first body is

I, 0 0

1' = 0 1,, 0

o 0 Im

The second body is rotating around the m—axis with angular velocity w. At t : 0 the principal moments

of inertia of the second body are

cos ai + sin ak, j, —— sin 041' + cos ak

That is, the second frame at time t is

= cos M + sin wt sin aj + cos wt cos alt

: cos wt; ~ sin out];

3
1

E
L

:
l

: — sin an" + sin wt cos aj + cos wt cos alt

Denoting by I”, Iv, [w = L, the principal moments of inertia corresponding to the axes 1117,15, the tensor

of inertia of the second body is given by

H [u cos2 a + 1,, sin2 a 0 (I, — 1“) sin a cos a

I z 0 I, 0

(I, — Iu) sinacosa 0 [u sin2 a + 1,, cos2 a

This shows that I” is independent of t. The total inertia tensor is

1,, + L, cos2 a + I” sin2 a 0 (I1, — [1,) sin a cosa

I:I’+I”: 0 I„+I„ 0

(L, — I“) sin acosa O Iz + I“ sin2 a + L, cos2 a
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Since

detI = (I, + Iy)(I§ + 1,1,, + 1,1,, + 1,10% 0

we can compute the inverse of the locked inertia tensor l.

The rotation

1 0 0

R : 0 cos wt sinwt

O — sin wt cos wt

corresponds to the rotation vector

(um
101

The total angular momentum equals to the angular momentum of the second body

1,, cos2 a + 1,, sin2 04

J 2 ["0 = w O

(L, — [1,) sin (1 cos 04

Since 5 : lI—lJ" is independent of t, the reconstruction equation

0-10 = 1—1.1”25

has solution

0 f: 0

C(t) = expt —€Z 0 g,

O —€m 0

where

w
' 2 2 2 . 2

5x = detl‘lUy + Iv)([‚1; + In s1n oz + I, cos a)(l„ cos a + Iv Sm 04)

+021 + [Man — Iu)2 sin2 ozcos2 (1}

5y 2 0

'51 : dewalUy + [0(11) — I“) sinacosaUu cos2 a + 1,. sin2 a) +

+(Iy + IU)(Iz + 1., cos2 oz + 111 Sing a)([„ — I“) sina cos a}

Z + [11)(1’0 _ + [u COS2 a + [,0 Sin.2 a) sinacosa
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