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Thermomechanical Description of Moving Discontinuities, Appli—

cation to Fracture and Wear

C. Stolz

The propagation of moving surface inside a body is analysed within the framework of thermomechanical

couplings, when the moving surface is associated with an irreversible change of mechanical properties.

The moving surface is a surface of heat sources and of entropy production, intensities of which are related

to particular energy release rates defined in terms of Hamiltonian gradients. As emamples, we analyse

the evolution of partial damage in a composite sphere and a model for study the contact wear phenomena

between two bodies.

1 Introduction

In the recent past, the propagation of damage has been studied in connection with fracture mechanics,

and different approaches based 011 macroscopic or microscopic descriptions of mechanical degradation

properties have been proposed.

During a loading history damage in continuum mechanics can be induced by the initiation and the

growth of micro-cracks and micro-cavities. These descriptions, which are based on the evolution of the

microscopic properties, propose to take the growth of pores or microcracks into account, through the

idea that when some threshold value is reached, the material can not support further tensile loading.

Variational formulations were performed to describe the evolution of the surface between the sound and

damaged material (Bui et al., 1981; Pradeilles—Duval and Stolz, 1995). In the framework of thermome—

chanical coupling as in fracture mechanics the analysis defines two different energy release rates associated

with heat production and entropy production. (Stolz, 1995 ; Stolz and Pradeilles—Duval, 1996).

This paper is concerned mostly with the description of damage involved on the evolution of a moving

interface along which mechanical transformation occurs. Some connections can be made with the notion

of configurational forces, (Gurtin, 1995 ; Maugin, 1995 ; Truskinovski, 1987 ; Grinfeld, 1980,1991).

2 General Features

The domain Q is composed of two distinct volumes 91, (22 of two materials with different mechanical

characteristics. The bond between the two phases is perfect and the interface is denoted by F, (F z

891 D 392). The external surface 60 is decomposed in two parts sou and EDT on which the displacement

ud and the loading Td are prescribed respectively.

The material 1 changes into material 2 along the interface l‘ by an irreversible process. Hence l‘ moves

with the normal velocity c : (tN in the reference state, N is the outward 92 normal, then (b is positive.

When the surface l‘ is moving, all the mechanical quantities f can have a jump denoted by lf l : f1 7 f2,

and any volume average has a rate defined by

(l .

— dw : do) 7 . a

dt o(r) f /o(r) f /rm C N d

The state of the system is characterized by the displacement field u, from which a strain field 5 is derived.

The other parameters are the temperature 6 and the spatial distribution of the two phases given by the

position of the boundary F. We analyse quasistatic evolution of F under a given loading prescribed on

the boundary 69.

The behaviour of the phase i is given by the free energy density wi , function of the strain 5 and of the
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temperature (9. The mass density of the two phases is the same ‚o. The state equations of each phase are

6101* Bwi

01' i 9' :

‘_paa’” cw

 

where ai is the reversible stress and 51- the entropy. If the materials have no viscosity then oi is the

stress satisfying the momentum equation, If each wi is a quadratic form, the two phases are linear elastic

materials. The potential energy of the structure Q ((21 U (22) has the following form

79(u‚F‚Td) : Z / p'wi(5(u),6) du — Td.u da

4,12 97', 89T

The potential energy represents the global free energy in a thermodynamical description ; we can notice

that the position of the interface F becomes an internal parameter for the global system. The character—

ization of an equilibrium state is given by the stationarity of the potential energy

 

5 . am

——.Öu: zsöu dw— T.6uda:0p a ( )

for all öu kinematically admissible field satisfying (Su : 0 over 39”. This formulation is equivalent to the

set of local equations :

a local constitutive relations

8/111,;

Ui : p 86

 

o momentum equations

div a : 0, [U].N : 0 over F, an : Td over ÖQT

o compatibility relations

25 : Vu + Vtu, : 0 over F, u : ud over 69.”

At a given state of equilibrium for a given value of the prescribed loading (ud, Td), the position of the

interface I‘ is kown. At this time we apply a variation ofthe loading, the mechanical quantities evolve and

propagation of the interface can occur according to a given evolution law. For a prescribed history of the

loading, we must determine the rate of all mechanical fields and the normal propagation (g5 to characterize

the position of the interface F at each time.

Let us introduce the convected derivative Dd, of a function f (zur, t) defined along F as

 

7 . f(a;+q5NAt,t+At)—f(as,t)

Drf-Alra AL

As the contact is perfect between the phases the displacement and the stress vector are continuous along F.

Their rates have discontinuities according to the general compatibility equations of Hadamard, rewritten

with the convected derivative :

Dd>lulr : lvlr w : 0

lDd>(U'N)lr : + Z O

where diva : diUF ~ N.VFJV . The discontinuities of a and Wu have a property of orthogonality as

pointed by Hill (1986): [a] : [Wu] : 0.
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3 Dissipation Analysis

The mass conservation leads to the continuity of the mass flux m : pgb . The first law and the second

law of thermodynamics give rise to local equations inside the volume and along the moving surface F :

pé 2 azéidiv q, overfl

0 = m[e]+N.a.[v]vN.[q], onI‘

where e is the internal energy density (6 : w+€s)‚ and q is the heat flux associated to the heat conduction.

Thanks to the Hadamard compatibility equations, the heat power supply is given in terms of a release

rate of the internal energy as an objective quantity defined along F

N. {q} 2 Gthqfi, with GM 2 de] i N.a.[Vu].N : ple] # a: [a]

The value Gth is obtained by considering the orthogonality condition of Hill. When d) : 0, in the reference

state, the interface I‘ does not move, and the normal flux is continuous. When the transformation occurs

the moving interface is a surface of heat sources, the intensities of which are given by GthÖ. The total

internal energy of the structure is

E(u,F,6,Td):/ edw_ Td'udazij/ :3de

90") 352T

For a quasistatic evolution, the first law of thermodynamics is written as follows :

dE 8E -d /

——- — ———-.T : i q.n da

dt öTd an

and taking into account of the momentum conservation, we have

8E.

fif— 4/1fl[q}‚Nda——/FGthq5da

Then the derivative of the total energy relatively to the position of the interface is the source of heat due

to the irreversible process.

The entropy production is given by

 

[Owe + d“; q e (IX—26W + /F(*m[s] +N.[%])da 2 o

Under the assumption of separability of the two dissipations, the term inside the volume is reduced to

the conduction and the term along the surface is then

Dr : p[w] — Né0.[Vu].N 9b 2

where Gs is the release rate of free energy. This quantity has an analogous form to the driving traction

force acting on a surface of strain discontinuity proposed by Abeyaratne and Knowles (1990). The criteria

which guide the evolution of the interface may be written as function of this quantity.

In a thermomechanical coupling, two different release rates must be distinguished. One, defined in terms

of variation of the total internal energy with respect to the position of the interface, determines the heat

source associated with the moving surface ; the second one describes the production of entropy. In the

case of an isothermal evolution, the total dissipation is given in terms of the derivative of the potential

energy relatively to the position of the interface

d73-
E.r_/Fc:sq.sda

where G5 : [)[wl — a z [V5]. In this case, there is only one energy release rate to characterize the

propagation. It gives the sources of heat production and the dissipation.
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These relations can be generalized in the dynamical case, by replacing the internal energy of the system

by its Hamiltonian, (Stolz, 1995, Stolz and Pradeilles—Duval 1996,1997).

4 Quasistatic Evolution

In isothermal evolution, complementary relations must be considered to describe irreversibility. An energy

criterion is chosen as a generalized form of the well known theory of Griffith. Then, we assume

qfi 2 O,if GS : GC on F, and (75 : 07 otherwise

This is a local energy criterion. At each equilibrium state, the interface 1“ can be decomposed into two

subsets where the propagation is either possible or not. Let us denote by F+ the subset of F where the

critical value GC is reached. The evolution of the interface is governed by the consistency condition,

during the evolution of F ; if at the geometrical point mp(t) the criterion is reached

Gs(.’L‘F(t)‚ t) Z Gc

then the derivative of GS following the moving surface vanishes D¢GS : 0. This leads to the consistency

condition written for all points inside F+

— ¢*)D¢Gs Z 0, ng* Z 0, over F1—

otherwise (15 = 0. With Hadamard relations the derivative defined above takes the final form

D4,GS : [t.a].Vv1.t — N.d2.[Vu].N 7 913K

K : t.divp02.[Vu}.N 7 t.02.V([Vu].N) + [a : V5.N] 7 N.0.(VVu.N).N]

In that case, the evolution is determined by the functional

2
. 2’ .

F(v,q§,Td) : / 15(1)): 8 w z 5(1)) du) 7 Tdm da+ ($[t.al.Vvl.t + da

Q 2 8536 laQT F 2

 

Then the evolution is given by :

8F 8F
_I v >o< __ 7 =o< >

(„U (v v>+a¢<¢ am)

for all v* kinernatically admissible fields, and d)" (5) Z 0 along F+. The discussion of the stability and

bifurcation along an evolution process can be investigate as presented in the paper Pradeilles—Duval and

Stolz (1995).We consider the rate of thexdisplacement v which is solution of the local equations :

 

52wd. . Z 0 . : 2 . .
w O’ ‚ a 858€ 5(1)), 1ns1de Q

U z vd on 59“, (in : Td on ÜQT

and satisfying non—classical boundary conditions on F, for any given velocity qfi :

Dd)(U.N) 2 0, D¢[u] ä Ü

We define the value W of F for such a field v(¢, Mfr“), then W(q§,vd,Td) = F(v(q§,vd, Td), q’),Td). The

stability of the actual state is determined by the condition of the existence of a solution

82W

a¢a¢

and the condition of uniqueness or non—bifurcation is given by

 

5,1) 6¢>20,6¢200nf‘+,6¢740

82W

Mam
6gbZO‚Öc]57E00nF+
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5 Composite Spheres Assemblage

In this section, the composite spheres assemblage of Hashin is analyzed, (Christensen and Lo, 1979). The

system is composed by the compact assemblage of spheres with external radii in order to fill the whole

domain. The microscopic structure is constituted by composite spheres with a core made of material 2

and the shell of material 1. both materials are linear elastic and homogeneous. As in the general case7

materials 1 transforms into material 2 ; the transformation is irreversible and the criterion is a generalized

Grifiith’s criterion based on the energy release rate of the transformation. Applying the same method

than in (Herve and Zaoui, 1991), the assemblage is considered as well—disordered. Using the particular

three phase model, the homogeneous equivalent medium denoted by material 0 is unknown. In phase i,

the local characteristics are the bulk modulus IQ and shear modulus ‚ui. In what follows, k1 is assumed

to be larger than kg.

5.1 Macroscopic Behavior with One Family of Spheres

There exists only one family of composite spheres in the structure ; c is the concentration of material 2.

Using analytical results obtained in (Herve and Zaoui. 1991), one gets the bulk modulus of the material

0, denoted by kg

(k2 - ’91)

1 + 3 leg—k] I—c

(mesh)

k02k1+c

On the interface. the energy release rate is

 

I 63(4/11 + 3k1)(4‚1‚1 + 3k2)(lc1 a kg)

2(4M1 + 3kg + 30061 * k2))2

where 60 represents the uniform strain (a : 601) given at the infinity. When a generalized Griffith

criterion is taken into account for the damage transformation, as G reaches the critical value G0, the

ratio 0 increases such that G equals to G6. The behavior takes the form plotted in the following figures.

 

The composite sphere The response of the composite sphere

5.2 Macroscopic Behavior with Two Families of Spheres

In what follows, we consider the macroscopic evolution of a composite spheres assemblage when two

different families (I and II) coexist in the structure. They are supposed to be perfectly disordered. 01

(respectively CH) denotes the volume fraction of material 2 in the first family (in the second one). If

we denoted by GI (resp. GII) the release rate of energy for the family I (resp. II)‚ we can shown the

inequality

(GI — GII)(CI — CHM/11— #2) > 0
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So, the global behavior of the system is the following one : at the beginning the macroscopic behaviour

is linear elastic, until the energy criterion is reached and at this moment

a If M1 > M2, the difference between the two concentrations ((31 — c1 1) increases until the larger reaches

1.

o If ‚ul < M2, the difference between the two concentrations decreases until there are identical. That

means that the two different families become only one.

o If M : #2, both concentration could increase.

When whole volume is transformed, the behavior is the mechanical behavior of material 2. Even if the

system is composed by only one family, the local response to the loading increment is non—unique. In fact,

there can exist many kinds of bifurcations: one part of the structure can be damaged, that is some kind of

damage localization ; or very well—ordered configurations can appear for which specific space distributions

of the constituents phases are obtained

One gets order among disorder. If #1 > ‚11,2 then a new perfectly disordered family can appear along the

first one. In that case there is more disorder in the structure.

Here, it is to be underlined that the total dissipation is only due to the change of mechanical characteristic

along a moving surface. The macroscopic behavior is dissipative while the components are always in a

reversible process. The transformation between the two material corresponds to a volume damage at the

macroscopic scale.

6 Dissipation Analysis in Dynamical Case

Now, we take the inertia effects into account. Thus the two thermodynamic principles must be rewritten.

The mass conservation leads to the continuity of the mass flux m : pqfi. The first law and the second law

of thermodynamics give rise to local equations inside the volume and along the moving surface F :

pe' : 625—:7div q‚infl

2

O : m[e+%]+N.[0.v] ~N.[q], onF

Then taking the conservation of the momentum and the continuity of the displacement into account :

[u] 2 0, [al.N : mm

we obtain the heat power supply defined by the internal release rate Gth (Ö : a0] + 02)):

N.[ql = Gthqfi, Gm = p[e] 7 N.ä.[Vu].N

The total Hamiltonian of the structure is the sum of the kinetic energy and the total internal energy, the

potential energy is defined as above :

1 .

Hz/ —pv2dw+79+/p59dw

.02 Q

The momentum conservation is then defined by the set of equations

6H d

— 6 : .6 du — 6 :w—— .apop /va ,auou dt/Qpöudw

where p is the momentum. These equations lead to the classical equations of motion. The first law of

thermodynamics can be written as follows :

dH ÖH ~

— — —.Td :/ —q.n da

dt öTd an
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and taking into account of the momentum conservation, we have

ÖH- 7_

E;I‘——/F[q].N da— ÄGthqfi da

The second law has the same form as previously. The interface is perfect at each time. Under the

assumption of separability of the two dissipations, the term inside the volume is reduced to the conduction

and the term along the surface is then : D1" : ¢Gs /6’ where G8 has the form of a release rate of energy.

GS = p[wl — N.ä.[Vu]‚N

In a thermomechanical coupling, two different release rates must be distinguished, one defined in terms of

variation of the Hamiltonian gives rise for the heat source associated with the moving surface, the second

one describes the production of entropy.

In the case of an isothermal evolution, we can define another Hamiltonian

1 2
H : —pv du + 77

_Q 2

and the total dissipation is then given by :

dH aH .d 6H-
—‚—. :—.r:‚ G n d
dt aTdT 3r /F dy‘f’a

where Gdyn : pfw] — N.&.[Vul.N.

7 Contact - Wear Phenomena

Wear phenomena are due to contact and relative motion between two solids and characterized by a loss

of material from at least one of them. In the contact area the products of wear or lost particles and the

damaged subsurfaces of both solids define an interface. Particles detache, asperities are cracked, failure

occurs in this interface making its description difficult. Many works on wear are based on experimental

observations which depend closely on operating conditions (for example the Archard law, Archard, 1953)

and can not provide enough information for studying the wear of a structure (Meng and Ludema, 1995).

We propose to characterize the continuous evolution of the boundary separating both solids from their

common interface. These surfaces between sound and damaged materials are moving surfaces according

with the loss of material due to wear phenomena. In the present work, we prepose to derive a criterion

for wear of both contacting bodies describing in a more fundamental manner the local quantities involved

in the wear process.

We analyse a system of two contacting bodies. The two bodies are decomposed into a sound part 91

(resp. S22) and a damaged part 9’1 (resp. separated by a perfect interface F1 (resp. F2). Along the

contact area a third body appears 93 composed by the area of contact, the detached particles, the two

damaged materials The sound materials are characterized by known constitutive laws defined by a

given free energy and a potential of dissipation. Damaged materials correspond to the process zone

where the wear takes place. They are transition zones between sound material to granular system. When

the wear occurs, each IT,- moves with a normal velocity (éiNi where the normal Ni is oriented inward

All the conservation laws are written as previously

0 the conservation of mass over 11: is reduced to

mi : PiÖi

o the conservation of the energy is

7nin + 5T]p. i Ni.ö’.[’l)]l“i + [q].Ni : 0
1,
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o the second law gives us the production of entropy as

i ~N.“.
„FMT—WN

Each interface F,- is a perfect bond7 the displacement is continuous. If the mass fiux mi is null, the jump

of the velocity vanishes. Then the dissipation D11]. is characteristic of the loss of material associated with

the wear phenomenon.

The third body 93 has a small thickness and it’s average surface F defines the contact area between

the bodies. An element of 93 is defined by a small cylinder with area (15’ of F and a length h for the

thickness. By unit area of contact dS', the total dissipation of the interface is then

D:/D3dZ+ZDpi

h i

where D3 is the volumetric contribution to the dissipation of the interface F :

VT 1 -

D :7 .——— -O'Z radvi 1i) ST3 Q3 T + T( 9 ‚0( +

This total dissipation contains two contributions, one due to friction associated to the relative motion

of the two solids and the other related to the loss of mass mi. The internal structure of 93 could be

analyzed by considering some mechanical characteristics. The solution of the problem of films of thickness

h submitted to a uniform loading and shear gives information on the level of the two contributions.

On each Pi, the displacement is continuous. The mass flux is mi : ,0ng where Q is small relatively to the

gliding motion between the two bodies. Then the stress vectors are continuous between the two bodies.

The Hadamard compatibility equations give

M. + wuer = o

the dissipation can now be rewritten as

D z/ngerZflw. 703) > 0
h 1. Ti Z T

where the quantities

G1 = pwi i N.U.Vu.N‚ G? 2 p103 7 N.0.VU3.N

In the expression of the dissipation the nature of the two terms are different. The first is a dissipation

inside the interface along the surface of contact I‘, which is essentially the term of friction, the condition

of friction depends on the behaviour of the interface material. The others are those due to wear.

Assume now that the temperature is uniform and the evolution is isothermal. Moreover assuming that

the behaviour of the interface is perfect plastic. When the shear reaches the yield stress Tc, the rate 1/ is

approximated by v : yh-zem so the dissipation is reduced to

7 1 (15¢ 3
D — T(TCV+:E(G¢ ‘62)) 20

the first term takes the form of a friction law. A wear criterion is defined by a law between the propagation

gbi and the thermodynamical force 19 = Gi — G? If a potential of dissipation is given as a convex function

of 71-, applying the normality law ensures the positivity of the production of entropy. This gives rise to

a local definition of wear. The identification of a law for wear. or such a potential remains still now the

main difficulty.
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8 Conclusion

We have considered the transformation of a material to another one with different mechanical character—

istics along a moving interface as an irreversible process. This point of view can describe many situations

corresponding to the transition between sound materials and damage materials.

The application of this idea for the description of wear-contact phenomena gives a definition of the

mechanical characteristics associated to wear description. The description is local and makes in the

dissipation the part due to friction and the part due to wear.
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