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On Korn’s Inequality for Nonconforming Finite Elements

P. Knobloch

We investigate the validity of discrete Korn’s inequality for general nonconforming finite element spaces

defined over triangulations consisting of triangles and/or quadrilaterals. We show that for spaces satis-

fying the patch test of order 2 the discrete Korn inequality holds whereas it fails for spaces satisfying the

patch test of order 1 only.

1 Introduction

Since the pioneering work by Crouzeix et al. (1973) many various nonconforming finite elements have

been developed, cf. e.g. Fortin et al. (1983), Fortin (1985), Crouzeix et a1. (1989), Rannacher et a1. (1992),

Kouhia et al. (1993), Cai et a1. (1999), Knobloch et al. (1999). The main feature of nonconforming fi—

nite elements is that the usual continuity requirement across edges of the triangulation is weakened to

the validity of some patch test, which allows jumps of finite element functions across edges. Although

these jumps cause additional difficulties in theoretical investigations of the corresponding finite element

discretizations, the application of nonconforming elements can be justified since they possess several

favourable properties. First, nonconforming finite elements are more suitable for a parallel implemen-

tation than conforming elements since they lead to a cheap local communication when the method is

implemented on a MIMD machine. Nowadays, with the increasing importance of parallel computers for

scientific computations, this feature becomes still more and more important. Another important feature

of nonconforming finite elements is that they usually fulfil an inf—sup condition so that they are very

attractive for solving problems describing incompressible or nearly incompressible materials.

As a model problem let us consider the following boundary value problem of plain linear elasticity

(cf. Neéas et al., 1981):

——,aAu—(/\+u)Vdivu = f inQ (1)

u : 0 on PD (2)

A(divu)n+,a(Vu+VuT)n : g onFN (3)

where Q C R2 is a bounded domain whose boundary is Lipschitz~continuous and consists of two disjoint

parts I‘D and PN such that meas1(I‘D) 7€ 0. The domain Q represents the configuration of an elastic

isotropic body in the absence of forces and the vector u describes the displacements of the points of Q

under the influence of the volume force f and the surface force g. The material parameters A, p > 0 are

the so—called Lamé coefficients and the vector n is the outer normal vector to the boundary of Q. We

define the space

V:{veH1(Q)2 ; v:0 on I‘D} (4)

where H1 (Q) is the Sobolev space of square integrable functions in Q whose generalized first derivatives

are also square integrable in Q. Then the weak formulation of the above problem reads: Find 11 E V

such that

/A(divu)(divv)+g(Vu+VuT)-(Vv+VvT)dm=/ f-vda:+/ g-vda Vv€V(5)

Q o rN

The left—hand side represents a continuous bilinear form on V >< V which is V—elliptic in consequence

of the soicalled Korn inequality (cf. Neéas et al., 1981)

IV|1,Q S C Ilvv + VVTHofl V V E V

Therefore, there exists a unique weak solution. If we approximate this weak solution using the finite
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element method, we need the ellipticity (uniform with respect to the discretization parameter) of the

respective bilinear form on the finite element space Vh approximating V since otherwise we cannot

guarantee the unique solvability and optimal convergence properties for the discrete problem. In the case

of conforming finite element methods the uniform ellipticity of the bilinear form is a direct consequence of

(6) since Vh C V. However, nonconforming finite element spaces approximating V are not contained in

V and hence it is not obvious whether a discrete analogue of (6) holds and whether it holds with a constant

0 independent of the discretization parameter. Let us remark that the validity of (6) is also necessary

for solving other types of problems than above, e.g., for solving fluid mechanical problems with surface

forces prescribed on a part of the boundary consisting of open triangular and /or quadrilateral elements

K having the usual compatibility properties (see e.g. Ciarlet, 1991) and satisfying hK E diam(K) g h

for any K E 77,. We assume that any edge of ”EI lying on 89 belongs either to I‘D or to FN .

We denote by 7;: a triangulation obtained from ’77, by dividing each quadrilateral element of 77, into two

triangles. This construction of 771* is not unique unless 77, only consists of triangles in which case we

have T" = 77,. Thus, we assume that, for each triangulation ’77,, one of the possible triangulations 7;:

has been fixed. We require that all the triangulations under consideration are such that there exists a

constant a independent of h satisfying

h

Ä g 0’ V K E 77:
(7)

9K

where 9K is the maximum diameter of circles inscribed into K. Note that our assumptions do not

exclude the case when some quadrilateral elements of Th degenerate to triangles.

We denote by 5h the set of the edges E of Th and by 8,1,, 6,? and 5,1,), the subsets of Eh consisting of inner

edges, boundary edges lying on PD and boundary edges lying on FN , respectively. Further, we denote

by 5,: the set of the edges of 771*. For any edge E, we choose a fixed unit normal vector nE = (nE1,nE2)

and we introduce a tangent vector tE : (—nE2,nE1). If E C 89, then m; coincides with the outer

normal vector n to the boundary of Q.

For any inner edge E 6 5,1,, we define the jump E of a function ’U across E and the average E of

v on E by

umE=mms—mmu <MM=$KWdE+Mmml ®

where K, K are the two elements adjacent to E denoted in such a way that 11}; points into K. If an

edge E E 5;, lies on the boundary of Q, then we set

[MEZUWEZWE (m

Throughout the paper we use standard notation L2(G), Hk(G) : Wk*2(G), Pk(G), 0(5), etc. for the

usual function spaces defined on a set G C R2, see e.g. Ciarlet (1991). We only mention that we denote

by Lä(G) the space of functions from L2(G) having zero mean value on G. The norm and seminorm

in the Sobolev space Hk(G) will be denoted by H - “k’G and | ' Im, respectively. The inner product in

L2(G) will be denoted by (-7 -)G and we set (~, -) = (-7 )9.

2 An Inf—Sup Condition

To investigate the uniform validity of a discrete analogue of the Korn inequality (6), we shall need an

inf—sup condition of the type

divv,

sup L—q—l 2 ßllqllm v q e Q (10>
vEZh\{0} |V|1‚Q

where Zh C H1(Q)2 consists of functions vanishing on FN and being low degree polynomials along the

edges of 77,. The space Q C L2(Q) has to contain piecewise constant functions, which implies that the
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functions of Z}, have to be at least quadratic along the edges. Thus, it is natural to set

Z}, = R}, (EB G},
(11)

where

Rh = {v€C(fi)2 : v|K6P2(K)2 ‚f, v:0 onFN} (12)

Gh = {VGHä(Q)2 I VIK E Him)? 771*} (13)

Then, the infesup condition (10) holds with Q = L2(Q) and ß > 0 independent of h, which will be

proven in this section. The triangulation 77: is used instead of 77z in order to simplify the proof.

First, let us formulate some general results. We denote by V and Q two real Hilbert spaces with the

norms - “V and - HQ, respectively. The inner product in Q will be denoted by (-, -)Q. Further, we

introduce a continuous bilinear form b : V x Q ——> R satisfying

b(v‚q) S nllvllv Han V v E V, q E Q (14)

Then the following assertions hold true.

Lemma 1 Let there exist ß > 0 such that

bsup (1), q)
I zßllquQ qu Q (15)

uEV\{0} HUHV

Then, for any continuous linear functional g E Q', there exists a function u E V such that

1

WW) = (QM!) V q E Q and llvllv S - HQHQ’ (16)

Proof. See Girault et al. (1986), p. 58, Lemma 4.1.

Corollary 1 Let the inf—sup condition (15) hold. Then, for any q E Q, there exists 1) E V such that

1

WM!) = Hq||2Q and HUHV S - IIqHQ (17)

Proof. Setting (g‚ä) = (q,(§)Q for any Q'E Q, we have g E Q’ with ||gl|Q‚ = IquQ and (17) immediately

follows from (16).

Lemma 2 Let 1’1,’U2 E V, q1‚q2 E Q satisfy

b(vi‚€h) =1|qi||2Q HUz'Hv S ’Yi HquQ i: 1,2 (18)

b(v27 (11) : 0 ((117‘12)Q I 0

Then, denoting q : q1 + q2, there exists ’U E V satisfying

WM) = qulä Hle S ClquQ (20)

where 0 depends only on n, '71 and 72.

Proof. First, let us note that the second equality in (19) implies that

IIrIIIäZIIq1Ilä+IIq2IIä (21)

Further, according to (14) and (18), we have

 

K12 2

“’1 ||q2I|2Q (22>

1

|b(01‚(J2)| S ”71 qullQ |IQ2||Q S 5H41||2Q+ 2
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Thus, for Ü = U1 + (1112 with a = (1 + H2 712)/2, we derive

_ 1

b(v‚q)2HQ1IIä—Ib(v1‚Q2)|+a||q2llä2 -||Q1|2Q (23)

Hence the first part of (20) holds for U = f U with some f E (O, 2]. The second part of (20) immediately

follows from (18) and (21).

In what follows, we shall prove two auxiliary results from which we then obtain the desired infvsup

condition by applying Lemma 2. The general results of Corollary 1 and Lemma 2 will always be used

with V c [H1<G> \{1}12‚ Q c MG), II - HV = l - ta II - HQ = H - not and be) = (div-«>0, where
G C R2 is a suitable set. Note that (14) then holds with It =

Lemma 3 Let

Qh = {q E 52(9) I qlK 6 P0(K) 77?} (24)

Then, for any ä E Qh, there exists V E Rh such that

(divvfi) == ilällän IVIm S C llfillw (25)

where C depends only on Q, PD and cr from

Proof. We denote by u E C0062)2 an arbitrary but fixed function such that fFD u - nda : 1 and u : 0

on I‘N . Further, we denote

E, = {v 6 0(5)2 : le e P2(K)2 7;} (26)

and we define an operator Th 6 £(H2(Q)2,fih) such that, for any v E H2(Q)2,

rhv = v at any vertex of ’77: / (v — rhv) do = 0 V E E 5;: (27)

E

In a standard way (cf. Ciarlet, 1991, Section 15), we obtain

IThVIm S Ü IIVHm V V 6 H2592 (28)

where Ö depends only on Q and a from

Now consider any ä E Qh. We denote

1

= —— ‘d =—— 29ql meaSZm) /Q q w q2 q q1 ( )

Then (12 E Qh (1128(9). Setting v1 : ql measfifl) Thu, we have v1 6 Rh and, applying the Gauss integral

theorem, we infer that

 

I352 IV1I1‚n S Ö vmeaS2(fl) Ilullm ||qillo,n (30)

According to Girault et al. (1986), the inf—sup condition (15) holds for V : RhfiHä (9)2, Q z: thLä(fl)

and b(-, = (div -, with ß > 0 depending only on Q and 0. Hence, in View of Corollary 1, there exists

V2 6 Rh n H662)? satisfying

(diV V1aQ1) = “(11

. 1

(dIVV2‚q2) = llq2llc2m |V2|m S E Ilq2llo,n (31)

Now the lemma easily follows from Lemma 2.
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Figure 1. Notation for a right—angled triangle K (left) and a general triangle K 2 K1 U K2 (right).

Lemma 4 For any K E 71* and any {IG Lä(K), there exists V E Hé(K)2 such that

(divVaÖK Z MLK S CHÜHQK (32)

where 0 depends only on a.

Proof. First, let us assume that K is a right—angled triangle. We choose a coordinate system such that

the vertex of K opposite its hypotenuse lies in the origin and the legs ofK lie on positive axes (cf. Fig. 1).

Let a, b be the lengths of the edges of K lying on the axes m1 and x2, respectively. Defining a diagonal

matrix D = diag{a, b}, the mapping x +—> D‘1 :1: transforms the element K onto the reference triangle

K having the vertices (0,0), (1,0) and (0,1).

Consider any if E Lä(K) and set (Ki) : E](D i") for i: E K. Then (i E L(2)(K).A According to Girault et

al. (1986), p. 81, the infisup condition (15) holds for V : Hä (K)2‚ Q : Lä(K) and b(-‚ : (div ~,

with some ß > 0, and hence it follows from Corollary 1 that there exists 9 E Hä(K)2 such that

. A. A A 2 A 1 A

(dlvv,q);;» = IIqIIOJg IVILR S Ellqllog (33)

Setting Wat) : D {/‘(D“1 (II) for a: E K, we obtain a function from Hä(K)2 satisfying

. ~ 2 N 1 a b

(dwva = Hth IVI1‚K s E max E, 5 um“ (34)

Since a < hK g 0 9K < ab and, analogously, b < 0a, we see that (32) holds with C : o/B.

Now, let K be any element of 771* and let A, B, C be its vertices. We assume that the length of AB is

hK and we denote by D a point on AB such that CD is perpendicular to AB (cf. Fig. 1). Further, we

denote by K1 the triangle ADC, by K2 the triangle DB0, and by a, b, c the lengths of AD, DB and

CD, respectively. Then

c2 ch c

> —./h2 — 2 —— ———>—a__hK K C>2hK>2hK__2U
(35)

Since a/c < hK/QK g a, we deduce that

a c b c

max{—,~} <20 max{—,—} <20 (36)

c a c b

Consider any (7€ Lä(K) and let q1,q2 E L3(K) be defined by

1
:—————— Hd 2 =~—

Ki meas2(Ki) /K‘ q x Z a €12 q Q1 ( )

 

(11
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Then, denoting .Mz- = meaS2(Ki), i: 1,2, we have (MK1 M1 + q1|K2 M2 : 0 and hence

M1(M1 + M2)
T= ‘qlle — q1|K2 hK 6111m r ‘11le (38)

  

Ilqlnm = ,QIIKI

  

Let cp : AA A3 A0, where AA, A3, A0 are the barycentric coordinates on K with respect to the vertices

A, B, C, respectively. Then Lp E Hä(K) and

a b c hK
‘

d z _— __
<

/CD so U 12 h2 > 4803 Mm _ C (39)

Where Ö depends only On 0- LBt nor) be the unit normal vector to CD pointed into K2 and let us set

2

v1 = 04901100 with or =w“— (04 = 0 if q1 = O) (40)

for) <Pd0(Q1|K1 — (him)

Using (38) and (39), we obtain |a| g 24 a3 ||q1||07K and hence, applying the Gauss integral theorem, we

infer that

(divv1,q1>K :llq1IIä‚K MILK : 24 a3 Ö Ilqlilm (41)

 

Further, since (12 K E Lä(K,-), i = 1,2, it follows from the first part of the proof and from (36) that

there exists vz e H(}(K)2 such that V2 = 0 on CD and

. 2U

(leVZan)K :1|Q2||3‚K |V2|1,K S ‘B— ||Q2||0‚K (42)

Applying Lemma 2, we obtain (32).

Now we are in a position to prove the validity of the inf—sup condition (10) for Q : L262).

Theorem 1 There exists a constant ß > 0 depending only on Q, I‘D and a such that

(divv, q)
sup ——— Z ß llqllm V q E L261) (43)

vezh\{o} lvlm

where the space Zh was defined at the beginning of this section.

Proof. Let us consider any (1 E L2(Q) and denote by q1, (12 functions defined by

1
qllegm/qur VKE7? q2:q—q1 (44)

Then ql E Qh and q2|K E Lä(K) for any K E According to Lemmas 3 and 4, there exist functions

v17v2 E SuCh V2|K E for any K E 7774* a1nd

(divmi) = Hqinäg lViIm s CII‘Iillo,o 2': 1,2 (45)

where 0 depends only on Q, PD and 0. Thus, the theorem follows from Lemma 2.

3 Discrete Korn’s Inequality for Spaces Satisfying the Patch Test of Order 2

Any nonconforming finite element space which is defined over the triangulation 77„ approximates the

space V and satisfies the patch test of order 2 is a subspace of the space

V, : {v e we)? : le e H1(K)2 Th, /E[]v|]Eqdo z 0 v q e P1(E), E e 5;, U55} (46)
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In this section we shall show that a discrete analogue of the Korn inequality (6) holds for this space

with a constant C independent of h. The basic idea of the proof is the same as in Falk (1991) where the

discrete Korn inequality was established for some particular subspaces of Vh.

Following Falk (1991), we introduce the notation

8211 _ 821

8’111 8’02 3113—2 393—1

rotv = —— + —— curlz : (47)

55172 5331 (922 _ 822

a}; 3751—

First let us prove the following orthogonality result.

Lemma 5 Let Zh be the space defined at the beginning of the previous section. Then

Z (Vv,carlz)K=0 VvEVh,z€Zh (48)

K677;

Proof. For any element K, let nK = (mag/1,1131(2) be the unit outer normal vector to the boundary of

K. We denote by t K = (—naKgmaK1) the corresponding tangent vector. Applying the Gauss integral

theorem, we obtain

(Vv,curlz)K 2/

3K

vlä+vgä do VVEH1(K)2,ZEH2(K)2 (49)
812K BtK

For z E 08°(K)3, the right—hand side of (49) vanishes and since the space 08°(K) is dense in

we infer that

7

(vv,cur1z)K : 0 v v e H1(K)2, z e H3(K)2 (50)

If z e Zh, then z = r + g with r E Rh and g E Gh. Thus, it follows from (50) that, for any V E Vh,

Z (Vv‚cur1z)K z Z (Vv,curlr)K (51)

K677I K6771

The derivatives along edges of functions from Rh are continuous across edges and vanish on edges from

8€] and hence we deduce using (49) that

Z (Vv,curlz)K : 2 /E 51;; + [|U2|]E d0 (52)

K6771 Eesgusf

Since Ein/(9131;, arg/atE E P1(E) for any E E Eh, the rightihand side of (52) vanishes due to the

definition of the space Vh.

Now we have prepared all tools for proving a Korn inequality for the above space Vh.

Theorem 2 There exists a constant C depending only on Q, PD and a from (7) such that

Z 1vqu 5 C Z Hsz + vVTHgK v v e vh (53)

K671 K677L

Proof. Consider any v E Vh. According to Theorem 1 and Lemma 1, there exists z E Zh such that

(dime: Z<rotv,q)K vqemm Izlmsii Z IviK <54)
K6771 ß KETh
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Particularly, setting q|K : rot(v|K) for any K E 77,, we get

Z (rotv — div z,r0tv)K = 0
(55)

KeTh

It can be readily verified (cf. also Falk, 1991) that, on each element K e 77,, we have

2 1 T 1 ‚
|Vv| :;2-(VV+VV )-(Vv—curlz)+Vv-curlz+§(rotv—d1vz)rotv (56)

Thus, applying (48) and (55), we infer that

 

2 Z |V|iK = Z (Vv+VvT,Vv—curlz)K (57)

K6771 K6771

S Z HVv+VvTHäK Z ||Vv—curlz|Iä‚K (58)

K677; K6771

In view of (54), we have

 

2 ß2 + 4

Z HVV — CUrlZHäK S Z Mix (59)2

K677. ’6 K677,

and the theorem follows.

Theorem 2 implies the uniform validity of the discrete Korn inequality for many known nonconforming

finite elements, e.g., for the nonconforming quadratic element of Fortin et al. (1983), for the noncon-

forming cubic element of Crouzeix et al. (1989) or for the leo‘i element of Knobloch et al. (1999). Note

also that Theorem 2 implies the validity of the Korn inequality (6) since V C V1,.

4 Counterexamples for First Order Finite Element Spaces

In this section we show that Theorem 2 does not hold for typical nonconforming first order finite element

spaces. This is well known for the linear triangular Crouzeivaaviart element introduced in Crouzeix et

al. (1973) for which we can even find a triangulation 77, such that the right—hand side of (53) vanishes

for some v E V}, (cf. Falk et al., 1990). Therefore, we restrict ourselves to the quadrilateral case. The

triangular case can be investigated analogously. The proof follows ideas of Falk et al. (1990).

Let 77, be a triangulation of Q : (0,1)2 consisting of equal squares K with hK = h. We denote by

K : (0,1)2 the reference element and by Ö a space of functions on K satisfying P1(K) C Ö C H2(K )

and dim Q = 4. We introduce functionals Ii, 2' z 1,. . „4, and IE, JE, E 6 5],, defined either by

2(1)) : Üdö IE(v) =W /E (|v|)Eda JE(v) : /E[|vl]Eda (60)

where E1, . . . ,E.; are edges of K, or by

£117) = 0(51) IEW) = (lvl)E(CE) JE(U) = [lvllE(CE) (61)

where 6, and CE are;the midpoints of Ei and E, respectively. We assume that the functionals Ä, . . . ‚f4

are unisolvent with Q and we introduce a general nonconforming first order space

Wh={vEL2(Q)2 : VoFKe[Q]2 7h, JE(v):0 VEEEh} (62)

where FK : K —> K is any regular afiine mapping which maps K onto K. The space Wh defined using

the functionals (60) consists of functions satisfying the patch test of order 1. This is generally not true

for Wh defined using the functionals (61) which consists of functions continuous in the midpoints of

edges. It is easy to show that, for both types of spaces and for any fixed h, the root of the right~hand
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side of (53) is a norm on Wh and hence the inequality (53) holds for any v E Wh with some constant

Ch. However, this constant 0;, tends to infinity for h —> 0 as we prove in the following theorem.

Theorem 3 For any h < 1/3, the space Wh satisfies

sup zKeTh Mix 1

w„\{o} ZKET, va+va||gvK - 6M2};

 

whereM=sup{|ri|1,R: rec. mensl, i=1‚...‚4}.

Proof. Let 7;} C 7}, consist of elements whose closures intersect 80 and let 7?, 7;? divide 77, \ 7711 in a

checkerboard manner. For any K E 7],, let vK(:r) : %(a:2 — mK2,xK1 — 2:1), where (xK1‚a:K2) is the

barycentre of K. We introduce a function v E W}, uniquely determined by

v|K2vK VKETh2 vIKz—VK VKeThS IE(V):0 VEEE}, (64)

where 6'}, C 5}, consists of edges which do not belong to elements from ’77, \ Since V vK + V v} : 0,

we have

3M2

 

Z ||VV+VVTH3J< = Z IIVV+VVTIlä,K S4 Z lvlixz‘l Z lVOFKIiK S h (65)

K677. K677? K677} KeTh1

Further, we have IVKliK z 1 and hence

\/§ — 2h 2 1

Z lVliJr 2 Z W %,K Z (—h2—) Z W (66)

KeTh K67;qu

which gives (63).

The above result shows that Theorem 2 does not hold for quadrilateral elements of Rannacher et al. (1992)

and Cai et al. (1999) and for their various modifications which can be found in the literature. Let us

remark that the results of the present paper do not cover all possible nonconforming finite element

spaces. For example, in Kouhia et al. (1993), a linear triangular finite element being nonconforming in

one component only was introduced and it was shown that it satisfies the discrete Korn inequality.
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Errata

to the paper ,,On Korn’s Inequality for Nonconforming Finite Elements“ by Peter Knobloch in Technische

Mechanik, Band 20, Hefi 3, (2000), 205-214. Some printing errors occured, which are not due to the author.

The following paragraph has to be included on page 206 after line 3:

of conforming finite element methods the uniform ellipticity of the bilinear form is a direct consequence

of (6) since Vh C V. However, nonconforming finite element spaces approximating V are not contained

in V and hence it is not obvious whether a discrete analogue of (6) holds and whether it holds with a

constant C independent of the discretization parameter. Let us remark that the validity of (6) is also

necessary for solving other types of problems than above, e.g., for solving fluid mechanical problems with

surface forces prescribed on a part of the boundary (cf. Knobloch et al., 1998).

The validity of a discrete analogue of (6) has been already investigated for several nonconforming finite

element spaces (cf. e.g. Falk et al., 1990; Falk, 1991; Kouhia et al., 1993) and it is known that some of the

nonconforming spaces satisfy the discrete Korn inequality whereas for some other spaces the inequality

only holds with a constant C depending on the discretization parameter or it does not hold at all.

However, general conditions on nonconforming finite element spaces assuring the validity of the discrete

Korn inequality are not available in the literature.

Therefore, in this paper, we investigate the validity of a discrete version of (6) for general nonconforming

finite element spaces Vh approximating the space V. We consider triangulations of Q consisting of

triangles and/or quadrilaterals and we show that the discrete Korn inequality holds with a constant

C independent of h whenever the space Vh satisfies the patch test of order 2. Further, we show that

the validity of the discrete Korn inequality cannot be expected of spaces which satisfy the patch test of

order 1 only. The proof of the discrete Korn inequality relies on a technique developed in Falk (1991)

and uses a suitable inf—sup condition.

The paper is organized in the following way. In the next section we summarize notation and all the

assumptions made in this paper. In Section 3 we prove an inf—sup condition which is the most important

tool for proving the discrete Korn inequality in Section 4. Finally, in Section 5, we give examples of

general nonconforming first order spaces for which the discrete Korn inequality does not hold.

2 Notation and Assumptions

For simplicity we assume that the above—introduced bounded domain O C R2 has apolygonal boundary

60. We assume that 80 = FD U I‘N, where FD n FN = 0 and measl(I‘D) 75 0.

We denote by ’771 any triangulation of the domain Q consisting of open triangular and/or quadri-

lateral elements K having the usual compatibility properties (see e.g. Ciarlet, 1991) and satisfying

hK E diam(K) g h for any K G 77,. We assume that any edge of 77, flying on 60 belongs either to I‘D

or to 1‘” .
.~

On the same page, lines 4 to 6 are not valid and the original text holds good from line 7 on.

In equations (12), (13), (24) and (26), 71* has to be substituted by VKe 71* . In equations (46) and (62), Th has

to be substituted by VKe 7‘1, .

The publishers apologize for these problems.
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