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A Reference Solution for the Numerical Assessment of

Refined Plate Theories Including Boundary Layers and Edge

Disturbances

J . Meenen

Using a modified Fourier transformation, an analytical solution for the layered plate under plane bending

is derived. In contrast to Pagano’s solution, arbitrary boundary conditions at the plate edges can be

prescribed. Numerical examples for the three-layered plate are presented, and the influence of the ma-

terial properties on the size of the boundary layer and the predictions of refined plate theories is discussed.

1 Introduction

In the last thirty years, considerable effort has been made to derive plate theories which are suited

for layered structures with low transverse shear stiffnesses. In contrast to the classical laminate plate

theories which is based on the assumptions of Kirchhoff (Jones, 1975), most of these so—called refined

plate theories involve more than three (respectively five) degrees of freedom. Since they allow for a

more complex distribution of stresses and strains in thc through-thickness direction, they provide better

results for composite plates, especially in those cases where significant shear deformations are present

(Noor and Burton, 1989).

The assessment of refined plate theories is often performed by a numerical comparison with analytical

reference solutions of the three—dimensional theory of linear elasticity. In most cases, a Naviervtype

solution for the plate strip under plane bending is used, which has been derived for layered isotropic

plates by Bufler (Bufler, 1961) and for orthotropic plates by Pagano (Pagano, 1969). Some authors

prefer the solution of the rectangular plate with all four edges simply supported (Noor and Burton,

1989).

For the plate strip under plane bending, Pagano’s approach leads to an ordinary homogeneous differential

equation, whose unknown coefficients are calculated from the boundary conditions on top and bottom of

the plate. The prescription of additional boundary conditions at the plate edges is impossible. The same

effect can be observed in the Navier solution of the rectangular plate. Since both solutions are based

on a Fourier transformation in the in-plane direction(s), they automatically require periodic boundary

conditions. These solutions are therefore incapable of modelling the decay of edge disturbances and

boundary layers, which can have a significant effect on the accuracy of the results of the refined plate

theory (Koiter and Simmonds, 1972). The conclusions drawn from the numerical assessment on the

basis of these reference solutions are therefore valid only in those regions of the plate where no boundary

layers are present.

In (Meenen and Altenbach, 1998), an analytical reference solution has been derived which is based

on a modified Fourier transformation. In contrast to Pagano’s approach, it leads to an ordinary

inhomogeneous differential equation, whose particular solution is a function of the boundary conditions

at the plate edges. Exploiting this extended solution, numerical examples for the three—layered plate are

presented and the influence of material properties on the size of the boundary layer is discussed.

2 Basic Equations

For the derivation of the reference solution, the plate strip shown in figure 1 is considered, which consists

of different, linear—elastic plies. The plate strip is subjected on top and bottom to a load which is constant

in the icy-direction and which can be described by

033(r1,h/2)= Z qfsinprl) 033(x1,—h/2)= Z qi—sin(ipa:1)

i=1,3,... {21,13,w
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013(x1,h/2)= tgl'cos(ipa:1) 013(x1,—h/2): Z ti— cos(ipx1) (1)

i:l‚ ‚m i=l,3,...

with p : 7r/L the half wave length.

At the plate edges x1 = 0 and x1 = L, additional boundary conditions are prescribed, which lead to a

stress and displacement field symmetric with respect to x1 : L/2. They can be for example

011(0):!33) = 091(13) 011(L‚ $3) Z 091(33)

013(0w3) = 013(13) 013(L‚x3) = —0?3(1’3) (2)

but boundary conditions in terms of displacements are possible, too.

9+(331)   

$3,113 q‘(x1)

Figure 1: Plate strip

Neighbouring plies of the plate are perfectly bonded together, so that continuity conditions in terms of

displacements U1 and U3 and interlaminar stresses 033 and (713

k‚+ k 1 k, k, k,

uliW’a ):“1+ ($3 +) 013(333+):de—1($3+)

16, _ k, k, _ k,

"5033 +) — u§+1($3 +> 01333973 +) — “gig—1W3 +)

hold. It is furthermore assumed that

o the plies of the plate are orthotropic,

o the symmetry axes of the plies are parallel to the coordinate axes :61, x2 and :83 shown in Figure 1,

o the plate is under plane bending in the (x1,x3)—plane,

o the displacements and deformations are small,

0 the loading on top and bottom of the plate is symmetric with respect to x1 : L/2.

Under these conditions, the three—dimensional equations of elasticity can be reduced to the twoi

dimensional form

le1 le3 0 *61’1 0 0’11

R1163 R1323 Ü 0 —6a:3 0'33

0 Ü ngs —Öl‘3 —ÖJZ1 0'13 = 0

—ö.’L'1 0 -ö.7‚’3 0 0 U1

0 —8£E3 —ö.’l‚'1 0 0 U3

where R11, R13, R33 and R55 are the reduced compliances (compare for example (Altenbach et al., 1996)),

and the abbreviations 6:131 und 6x3 stand for B/axl and 8/Bx3.

As shown in (Meenen and Altenbach, 1998) and (Meenen and Altenbach, 1999), an analytical solution

of this problem can be found by an integral transformation similar to a Fourier transformation. For this
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purpose, the system of equations

M931) 1: fie W“) j: 771 (5)

is used, which is orthonormal on the interval [0, L] (Dreszer, 1975)

L

/¢i(£1)¢k($1)d$1 = 5i

0

if all i and k are either even or odd, with man) the complex conjugate of ¢k(:r1). The function f E

L2(O‚ L) can then be expanded into the series

2 fi¢¢(171)—> H961)

iz— 00

with the coefficients

L

fl = / fwmdml

O

The expansion of the derivative f’(a:1) : df(m1)/dx1

00

Z Ira-$1031) —> fllxll

iz—oo

leads to the coefficients

 

L L

ii = [f'(x1)mdx1= [f(x1)¢i(x1)]:+ (fig) / mammal <6)

Assuming that firm) is periodic on the interval [0, L] and using the system with even i, this expansion

leads to

L

f’ = / women (7)

Ü

In contrast to this classical formula, the additional terms in equation (6) allow for fulfilling non~periodic

boundary conditions. Introducing this transformation into the equations of linear elasticity, and replacing

the unknown stresses and displacements by their series expansion leads to the inhomogeneous system of

differential equations

Rii Bis 0 ‘ (jip) 0 Vii 111(173)

Mg R53 0 0 —Öx3 053 0

0 0 Rigs, “6x3 — (iii?) (711.3 : 113(53) (8)

— 0 —aiL’3 0 0 611(233)

0 —öl’3 — 0 0 1113 613(m3)

where the boundary conditions at the plate edges are introduced by the inhomogeneous terms on the

right hand side of equation They are calculated from the expression

 

m3) z: [fwtxswienf <9)
0
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In all what follows, it is assumed that the solution is symmetric with respect to x1 : L/2 and that the

numbers i are odd. In this case, the four boundary conditions at the plate edges can be reduced to

111(133) Z 0 113(133) : —\/iZU3(0, (I33) (911(183) Z —-\-/Z-E0'11(0, .133) &13($3) Z 0

lnverting eqs. (8) and replacing oil by

1

Vilma) = -§E (Rl30§s(133) - (ii?) HUM) — 131063)) (11)

leads to four ordinary inhomogeneous differential equations

 

‚- i . . d2 . . A . . d „

P {034903)} = (J (2P) R’fiw —J(1P)3Ri3> 011($3)+J(1P)3 EUBWB)

Pii _ des .2deA -22A‚

{(713033)} — — 11$ + (1P) max—3 011(33) _ (1P) dx32u3(l3)

i i . 2 d2 A

P {741(33)} : ((119)2(Rli1Rii3 — Bis )— le1R15€5dTJSE) (711(933)

. d d3 A

+ ((Wz Risa — Mid—$33) “3(933)

i Z- .. 2 d A

P {113063)} = (mews—Rt —R':3R25>d—„—3)m<xs>

3 k d2

+ (mm Rgs—jiprBd—gg)as(rs> (12)

The homogeneous part

. d4 d2

P” was z: (Rina; — (ipf (2ng + R25) + (ipr‘ ms)

is identical with the homogeneous differential equation derived by Pagano and Bufler. In the case of

antiperiodic boundary conditions,

u3(w1:0‚x3)50 0'11(331:0,I3)EO

the inhomogeneous parts vanish and the system of equations (12) reduces to Pagano '8 solution.

3 Numerical Results for the Three—layered Plate

A particular solution of the system of differential equations can be found if the distribution of the

transverse displacement U3(0,x3) and the normal stress 011(0, :03) at the plate edges is known. This is

however rarely the case. For the free edge or the clamped edge, an approximate procedure has to be used.

In the case of the free edge, the transverse displacement u3(0, 233) is replaced by its Fourier transformation

in the thickness-direction, the normal stress 011(0, :33) is identically zero. Apart from the still unknown

coefficients of the homogeneous solution, the Fourier coeflicients of u3(0‚ x3) are introduced as additional

unknowns. The boundary condition 013(0, :33) = 0 is then approximately fulfilled by solving the system

of equations

hk/Z

2/hk / 013(0,x§)dx§:0

—hk/2

hk/Z

2/hk / 013(0,x§)cos(2qua:§)d$§:0

_hk/2
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hk/2

2/hk / 013(0,$§)sin(2qua:§)dx§:0 (13)

—hk/2

with k the wave number in the thickness direction of the ply. This linear system of equations is completed

by the boundary conditions on top and bottom of the plate, the interlaminar conditions of continuity,

and an additional equation restricting the rigid body displacement of the plate.

As a numerical example, a plate strip of length L : 3 m is modelled, which is subjected to a sinusoidal

loading q+(x1) : qo sin(7r:c1/L) with qo = 2.0 N/m on the upper side. It is composed of three plies with a

thickness of 0.1 m, leading to a relative thickness of h/L = 0.1. The three plies are transversely—isotropic

with the axes of symmetry parallel to the wl—direction (see Figure 2). The Young’s and shear moduli of

the inner layer are reduced by a factor of 10 compared to the stiffnesses of the outer layers. The material

properties of the outer and the inner layers are listed in Table 1.

The effect of edge disturbances can be investigated by comparing a solution without any boundary layer

with results obtained for a well defined edge disturbance. As a reference, the antiperiodic boundary

conditions shown in Figure 2 are choosen. From the point of View of a first order shear deformation

theory, the antiperiodic boundary conditions are equivalent to those shown in Figure 2b, since they

involve the same shear force and bending moment. According to Saint—Venant’s principle, the stress

distribution in the interior of the plate should be the same. Due to the crack in the upper two layers, the

two boundary conditions will however lead to different stress distributions in the vicinity of the edge.

'13

 

x. —i—_... ——I—

     

Figure 2: Simply Supported Boundary Conditions. a Antiperiodic Boundary Conditions, b Cracked Edge

 

outer layers inner layers

  

EL 200.0 -109 N/m2 20.0 -109 N/m2

ET 5.0 .109 N/m2 0.5 .109 N/m2

GLT 5.0 .109 N/m2 0.5 .109 N/m2

VLT 0.25 0.25

l/TT 0.25 0.25

    

Table 1: Material Properties of the Plies,

The computations were performed for different material properties. Starting from the values listed in

Table 1, the parameters EL, GLT, I/LT and I/TT were varied in the ranges listed in Table 2. The range

for I/LT and z/TT was choosen in such a way that the stiffness matrix always remained positive definit

(Altenbach et al., 1996).

 

EL/ET 5.0 10.0 20.0 40.0 80.0 160.0

GLT/ET 0.25 0.5 1.0 2.0 4.0

„LT -35 —1.0 0.0 0.25 1.0 2.0 3.5

MIT 09 —0.5 0.0 0.25 0.5 0.9

    

Table 2: Variations of the Material Properties

Figure 3 shows the distribution of the transverse shear stress over the plate thickness x3 for different

279



material properties at the plate edge :81 = 0. In all diagrams, the shear stress (713 has been normalized

by a factor (h7r)/(qoL). A constant shear stress would therefore have the value 1, since it must hold

equilibrium to the loads applied on top of the plate.
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Figure 3: Shear Stresses at the Plate Edges for Different Material Properties

In the diagrams, the results are shown for the periodic as well as for the cracked boundary conditions.

As expected, the stress distributions differ significantly. In the case of periodic boundary conditions,

the stresses are smoothly distributed over the Whole plate thickness, with a maximum in the inner

layer, or two maxima in the outer layers and one minimum in the inner layer. The stress distribution is

significantly influenced by Young’s modulus EL and the shear modulus GLT. A low Young’s modulus

(EL/ET : 5) or a high shear modulus (GLT/ET : 2) prevent the existence of two maxima in the outer

layers. The Poisson constants I/LT and z/TT do not have a significant influence on the distribution of the

edge disturbances.

In the case of the cracked plate, the shear stress vanishes for :03 2 —-0.05 In, i.e. at the two cracked upper

layers. The non-zero values for x3 = 0.05 In are numerical errors. The shear stresses are significantly

higher than in the case of the undisturbed edge, since the shear stress must assure the overall equilibrium,

and a singularity is introduced at the crack tip.

The decay of the edge disturbances introduced by the crack is depicted in the diagrams of figure 4.

They show the shear stress in the middle of the upper layer 333 : 0.1 In as a function of the in—plane

coordinate x1. In these diagrams, the shear stress has been normalized by the corresponding value of

the reference solution with periodic boundary conditions, at x1 : 0 In and 2:3 : 0.1 In. The reference

solution therefore starts with the value 1 and decays with a cosine function. The shear stress in the

disturbed solution starts with the value 0, increases significantly in the vicinity of the edge and converges

against the periodic solution in the middle of the plate.

The diagrams clearly show that the Young’s modulus EL has got the biggest influence on the decay of

the edge disturbances. Whereas for EL/ET : 5 the boundary layer has nearly vanished at $1 : 2/1,

the edge disturbances remain present in nearly the whole plate for EL/ET : 40. In the same time,

the maximum difference between disturbed and undisturbed solution decreases, and the position of the

maximum moves towards the middle of the plate. The isotropic plate possesses the highest decay rate,
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Figure 4: Decay of Edge Disturbances for Different Material Properties

but has the highest maximum, too.

A high shear modulus GLT does only slightly increase the size of the boundary layer. It does however

significantly increase the maximum shear stress and move it towards the middle of the plate. An

absolutely high VTT significantly shortens the boundary layer, and Poisson’s constant VLT has nearly

any influence on the disturbed solution.

These numerical results agree with the theoretical investigations on Saint—Venant’s principle (Horgan,

1972a; Horgan, 1972b; Horgan, 1989; Horgan and Knowles, 1983), which show that the decay rate of

edge disturbances is significantly decreased in highly anisotropic materials. Although self—equilibrated

edge stresses do not influence the solution in the interior of the plate, SaintAVenant’s principle is not

applicable in its original form since it states that the boundary layer is of the size of about one plate

thickness. In highly anisotropic plates, the size of the boundary layer depends at least on the material

properties and on the plate thickness, and can be significantly larger than in the case of an isotropic

material.

When analyzing anisotropic plates by means of refined plate theories, it is therefore necessary to identify

regions of stress concentrations, induced for example by concentrated forces or edge disturbances. In

those regions, refined plate theories with more than five independent unknowns have to be used, since

the selfiequilibrated edge stresses inducing boundary layer effects cannot be prescribed by the classical

resultants 7’ normal force“, ”shear force“ and ”bending moment“. In most cases, the boundary conditions

of the additional resultants of refined plate theories are unknown and must be calculated from a three—

dimensional model. They can be explicitly prescribed only in the case of the free or the clamped edge.

Refined theories with only five degrees of freedom (Bhimaraddi and Stevens, 1984; di Sciuva, 1984; di

Sciuva, 1986; Reddy, 1984) are not capable of describing boundary layer effects, since no information

about self—equilibrated edge stresses can be introduced into the solution. They are however preferable for

the interior parts of the plate, since they lead to better approximations for layered anisotropic structures

than the classical laminate plate theories, without involving more unknowns than necessary.
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