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On the Use of the First Order Shear Deformation Models of Beams, Plates

and Shells in Creep Lifetime Estimations

K. Naumenko

Numerical creep—damage life—time predictions of thinwalled structures are discussed with respect to the cross

section assumptions used in engineering models of beams, plates and shells. The first part of the paper is

devoted to the comparative numerical study ofa pipe bendbased on shell and solid type finite elements available

in the ANSYS code. The second part demonstrates the possibilities and limitations of the first order shear

deformation beam theory in connection with creep damage analysis. The results show that the beam and shell

models provide a satisfactory accuracy of time dependent deformation and stress solutions for the von Mises

stress controlled creep response. The dependence ofthe creep strain rate on the kind of the stress state induced

by the damage evolution requires to refine through—the—thickness approximations of displacement and stress

fields used in the first order shear deformation engineering models. The errors of the creep solution with the

shell or beam model result in the underestimation ofdisplacements and the wrong edge zone stress redistributions.

1 Introduction

Creep continuum damage material models and finite element techniques have become an efficient tool for long—

term predictions in structures at elevated temperatures, Hayhurst (1994). The first step is the description of the

material behaviour by a suitable constitutive model with internal state variables characterising hardening and dam-

age processes. Based on the material science and continuum mechanics foundations various models are proposed

including physically motivated state variables and considering stress state dependences. With the progress in

the material description the question arises about the applicability of available engineering structural mechanics

models and corresponding finite element implementations to the creep damage analysis. Thin—walled structures

are usually studied using the models of beams, plates and shells, which are based on the through-the-thickness

approximations of threedimensional displacement and stress fields and have been originally developed within the

theory of linear elasticity (e.g. Reissner, 1985', Altenbach et al., 1998). A number of investigations show that

the classical Kirchhoff—Love and first order shear deformation shell theories can accurately predict the creep de-

formation and creep buckling of shells considering material models of primary and secondary creep (e.g. Betten

et al., 1989; Miyazaki, 1987; Takezono and Fujoka, 1981; Naumenko, 1996). The introduction ofdamage requires

to take into account non—classical effects in the material behaviour, e.g. different tertiary creep rates by tension

and compression or anisotropic behaviour induced by damage. As demonstrated in Bodnar and Chrzanowski

(1994) the effect of different damage rates in tension and compression induces nonsymmetrical through-the-

thickness damage distributions in a plate in bending, whereas the analysis has been based on the first order shear

deformation theory. In Altenbach et a1. (1997) the necessity to include geometrically nonlinear terms consid-

ering moderate rotations is discussed. However, these works do not answer the question, wether the classical

through—the—thickness approximations, e.g. linear axial displacement or parabolic transverse shear stress approxi-

mations provide accurate predictions if the damage evolution is taken into account. Although a number of higher

order models of beams, plates and shells are proposed for elastic sandwich or laminate structures (e.g. Reddy

et al., 1997; Reissner, 1985), little effort has been made in studies on applicability of these refined models to

creep—damage problems.

The aim of this paper is to discuss the numerical creep—damage predictions in thinwalled beams, plates and shells

with respect to the cross—section assumptions. Particularly we examine the first order shear deformation shell

theory, which is mostly used in the Finite Element codes, with the creep continuum damage material model. The

first part of the paper illustrates the results of the shell and solid finite element based creep—damage simulation

of a thinwalled pipe bend. The results are compared for various types of boundary conditions considering and

neglecting the stress state effect of damage evolution. In the second part we discuss first order shear deformation

beam equations and demonstrate the possibilities and limitations of the corresponding through-the-thickness ap-

proximations. Based on the Ritz method the simplified creep analysis of a beam is performed and compared with

plane stress finite element simulation.
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Figure 1. Pipe Bend Under Uniform Pressure, a) Boundary Conditions of Type I, b) Boundary Conditions of

Type II

2 Finite Element Study of a Pipe Bend

Figure 1 shows a pipe bend loaded by internal pressure. The calculations have been performed with R : 380

mm, d = 152 mm, h = 5 mm and p = 0.5 MPa. The conventional creep—damage material model of Kachanov—

Rabotnov—Hayhurst (e.g. Leckie and Hayhurst, 1977; Rabotnov, 1969) has been used

.C,_3 GVM n Sij ‚_ [(XO'1+(1—OL)GVM]k

sly-24W) a... w‘bW— (1)

In this notation are the components of the creep strain rate tensor, sij are the components of the stress deviator,

GM is the von Mises stress, 61 is the maximum positive principal stress and 0) is the damage parameter. The

material constants are taken for the 316 stainless steel from Liu et a]. (1994): a : 2.13- 10“13 MPa_”/h, b :

9- 10"10 MPa'k/h, n. = 3.5, k = 2.8, l = 2.8, 0t 2 l. The isotropic elasticity without influence of damage has been

assumed with E = 1.44- 105 MPa as Young’s modulus and V = 0.314 as Poisson’s ratio.

 

Let us start with the creep damage analysis employing the first type of boundary conditions, presented in Figure

1, a), where both edge cross sections are assumed to be movable in the axial direction as rigid bodies without

rotations. The analysis has been performed using the ANSYS finite element code after incorporating the material

model (1) with the help of the user defined creep material subroutine. In Altenbach et al. (2000a) we discussed

various examples for beams and plates in bending, which verify the modified subroutine. Two types of finite

elements available in the ANSYS code for plasticity and creep analysis were used: the 8 nodes solid element

SOLID 45 and the 4 nodes shell element SHELL 43, ANSYS User’s Manual Volume I — IV (1994). 30 x 24

elements were used for a quarter of the pipe bend in the case of the shell model and 30 x 24 >< 4 elements in the

case of the solid model. The meshes have been justified based on the elasticity solutions and the steady state creep

solutions neglecting damage. With these meshes the reference stress distributions as well as distributions of the

von Mises stresses in the steady creep state were approximately the same for both solid and shell elements and

did not change by further remeshing. For details of time integration and equilibrium iteration methods used in

ANSYS for creep calculations we refer to ANSYS User’s Manual Volume I — IV (1994) and Zienkiewicz and

Taylor (1991). The time step based calculations were performed up to to : (0* = 0.9, where 0),. is the critical value

of the damage parameter. The final distributions of the damage parameter are shown on Figure 2. According to the

two finite element models the critical damage state occurs on the inner surface of the pipe bend. The solid model

yields the maximum damage at the edge of the pipe bend, Figure 2, a). The shell model predicts two other zones

of maximum damage, Figure 2, b). The first zone is observable on some distance from the edge. The second

zone appears in the middle of the pipe bend along the circumferential coordinate. These damage distributions

correspond to the dominating bending stresses in the edge zones. Figure 3, a) shows the time variations of the first

principal stress in a Gauss point where the critical damage state occurs according to the solid model. Significant

differences between the time variations corresponding to two types of elements are observable. In the case of the

solid element based solution the first principal stress increases during the transient stage and relaxes down with

the damage evolution, the shell model yields a slight change of the first principal stress during the whole creep

process. The damage evolution for the given material is influenced by the first positive principal stress, if 0t 7E 0

in equations (1). With the 01—dependence the stress state effect of the damage evolution is considered. If different
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damage rates are induced by tensile and compressive stresses, the behaviour of ”compressive layers” across the

shell thickness is controlled by the steady state creep rate without significant damage, whereas the ”tensile layers”

exhibit an increasing strain rate due to damage evolution. The nonsymmetric strain distribution in the thickness

direction may be the cause of errors arising by use the shell elements.

a)

 

RNSYS 5.3

NOV 11 1999

14:17:14

QUE ELEMENT SDLUT

STEP=3

SUE =28

TIME=131596

NMIS52 (RVG)

DMX : .353043

SMX = .84844

0

      

.094271

‚188542

.282813

.377085

.471355

.- .565627

- .659898

754159
- '

.84844

‘
o‘e‘ ‘

N2“. “o““ “u

WM». ‘
MW»
W490
‘ “.“i

‘9“‘"‘

          
   

    

‘  

‘
fl
l

«
5
‘
»

 

  ‘
fl

I
n
n
i
‘‘l .v U

\ «95!
«’1

at:
a g-

I

  

V
-
‘
4
3
“

4
—
.
a

‚
A
U
!
‘

m
a
fi
a
-
s
»a

   

(J)

n
u
“

u

t9 I

a:
I"

. I"
‘ III  

  

  
   

    

b)

  
  

  

   

Ö
.

‘
1
‘

w   

 

           

4
5
’

2
.

,
9 3
%

‚
q
fi
ä
’

G ‘ä i f Z

2
,

e
:
‘ g
fi
s

‚
i

G
;

t
S
i
g
n
}

m
,
’

I
e
a

      

x
?
0
’

‘
1

‘
2

s
“
?

i
t
Ü

:
g

“
I I
t I I l
:
f

            

  

1
5
5
?
;

‚
c

ü
“

"
g I

              

    
  .3

.
‘
o
”

n
t

a
n
“
;

|
I
i
fl
i
1
‘
1
|

g
t

1
"
.
“
9
‘

i
ä
g
g
g

a
t
;

ä
ä
a

5
5
5

 

a
w

’
8
1
. m

g
!
»

a          

  

RNSYS 5,3

NOV 11 1999

13:44:47

RVG ELEMENT SÜLUT

STEP=1

SUB =228

TINE21617Ü7

NM1554 (QVG)

DMX .613916

SMN .896E>07

SMX 745036

.896E—07

E: .082782

m
.165564

.248345

.331127

.413909

. .4966‘31

- .579472
-

662254
- '

.745036

(I) 

 

tions ofType I: a) SOLID 45, b) SHELL 43

Figure 2. Distributions of the Damage Parameter at Final Time Steps, 0L = l in Equations (1), Boundary Condi—

In the next example we simplify the material model excluding the stress state dependence of the damage evolution

setting 0: = O in equations (1). This leads to (SW—controlled damage. The numerical results obtained by this

simplified assumption are presented on Figures 3, b) and 4. Figure 3, b) presents the time variations of the von

Mises stress. Comparing with the results of the previous example, Figure 3, a), a better agreement between the

time variations according to the solid and the shell models can be established. The shape of the stress relaxation

a) b)

0'], MPa

20

0 GVM, MPa

curves becomes similar. Furthermore the damage distributions, Figure 4, become similar. The solid and the shell
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Figure 3. Time Variations: a) First Principal Stress 0L : 0 in Equations (1), b) von Mises Stress 0t : 1 in Equations

(1), Boundary Conditions of Type I, l — SOLID 45, 2— SHELL 43

elements provide the same zones of the maximum damage.

In the last example we considered the (SI—controlled damage, but simplified the boundary conditions allowing an

additional rigid rotation of the pipe bend edge, Figure 1, b). According to the results of simulations the damage

occurs on the outer surface along the outer bend radius, Figure 5. This is the consequence of the membrane

stresses on the curved part, the influence of the bending stresses on the pipe bend edge zones is small. The solid

and the shell models provide the same damage distributions.
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Figure 4. Distributions of the Damage Parameter at Final Time Steps, 0t : O in Equations (1), Boundary Condi—

tions of Type I: a) SOLID 45, b) SHELL 43
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Figure 5. Distributions of the Damage Parameter at Final Time Steps, on : l in Equations (1), Boundary Condi-

tions of Type II: a) SOLID 45, b) SHELL 43

3 Material Behaviour and Cross—Section Assumptions

Creep behaviour of polycristalline metals and alloys is a complex phenomenon accompanied by different mi-

crostructural changes. It is known from material science that for moderate stresses (below the yield limit) and

elevated temperatures above 0.4Tm with Tm as the melting point, the steady state creep process is controlled by the

climb plus glide dislocation mechanism (e.g. Nabarro and de Villiers, 1995; Riedel, 1987). The strain rate can be

predicted using the power law stress function. For multiaxial stress states the deviatoric stress components and the

von Mises equivalent stress are responsible for the deformation process. In addition to irreversible strain, material

deterioration processes occur and lead to accelerated creep in the tertiary stage and to the final fracture. For poly-

crystalline materials the tertiary creep is accompanied by nucleation and growth of cavities on grain boundaries.

The cavities may nucleate earlier during the creep process, possibly at primary creep stage or even by spontaneous

deformation. The initially existing microdefects have negligible influence on the strain rate. As their number and

size increase with time, they weaken the material providing the decrease in the load—bearing cross section. The

nucleation kinetics can be related to the local grain boundary deformation as well as to the stress state character—

ized by the first positive principal stress (maximum tensile stress) and the von Mises stress Perrin and Hayhurst

(1994). The coalescence of cavities lead to propagation of oriented microcracks and to the final fracture. Further

the damage evolution induces anisotropic creep response. The cavities and microcracks nucleate on grain bound—

aries having different orientations. The significant influence of the damage anisotropy can be observed on the last

stage before the creep rupture. Figure 6 illustrates schematically the macroscopic creep response under constant
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stress and temperature. According to the discussed mechanisms the primary and secondary creep rates are domi—
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Figure 6. Typical Creep Strain Versus Time Curve

nantly controlled by the von Mises stress. The accelerated creep is additionally influenced by the kind of the stress

state. For example, different tertiary creep rates and fracture times can be obtained from creep tests performed

under uniaxial tension with the stress (5 and under torsion with the shear stress x/g‘c = G (e.g. Kowalewski, 1996).

Figure 7, a) shows creep curves for tensile, compressive and shearing stresses simulated by the constitutive model

(1) with material constants introduced in the previous section. The corresponding stress values provide the same

value of the von Mises stress. It is obvious that the tertiary creep rate is significantly dependent on the kind of

loading. Figure 7, b) presents creep curves calculated by the combined action of the normal and shear stresses. It

is seen that even the small supposed shear stress can significantly influence the axial strain response and decrease

the fracture time. On the other hand, if we consider the combination of the compression and shear, the shear creep

strain rate remains constant. The change of the sign of the normal stress influences both the normal and shear

creep responses. The stress states with combined normal tensile (compressive) stress and the small shear stress

are typical for the transversely loaded beams, plates and shells.
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Figure 7. Creep Responses for Various Stress States Computed Using Equations ( 1): a) Responses by Tension,

Torsion and Compression, b) Responses by Combined Tension (Compression) and Torsion

Based on the creep damage material response lct us discuss the requirements regarding the through-the-thickness

assumptions for modelling of thinwalled structures. First, since even the small shear stress can significantly

influence the material response, the transverse shear stress and the resulting transverse shear strain cannot be

neglected. Thus at least the first order shear deformation model has to be used for the creep damage analysis.

Second, the dependence of the creep response on the sign of the normal stress can lead to the non—symmetrical
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thickness distributions of the displacement, strain and stress fields. This has to be considered by specifying the

through-the—thickness approximations for displacements or stresses.

4 Observations on Beam Equations

In what follows we discuss the assumptions of the first order shear deformation theory in detail and introduce the

beam equations. The following simplified derivations will provide conclusions regarding cross section assump-

tions in connection with the effect of the creep damage. Let us consider a beam with a rectangular cross section,

Figure 8. Considering the beam as a plane stress problem the principle of virtual displacements yields

      

Figure 8. Straight Beam with a Rectangular Cross Section in Cartesian Coordinates

h

N
I
B
‘

l 1 l

/ [(0,an + txzéyxz + czaezwcdx = / q(x)5w(x, —h/2)dx — SW, = 5W, (2)

0 —1 O

Here l denotes the beam length, O'x, (Syfcxz and 815,8”sz are the components of the stress and strain tensors, respec-

tively, w is the beam deflection and C = 2z/h is the thickness coordinate. Here and in the following derivations we

use the abbreviations

E)_ ) d d d
ax

3 _ _ ‚ _ . _-
(m), a—Z(...):(...)‚z 3.44...) d—C(...):(...) El—t(...):(...)

For the sake of simplicity we assume the absence of tractions on the edges x = O and x = l. Specifying the through-

the-thickness approximations of axial displacement u and deflection w, various engineering displacement based

beam theories can be obtained, Reddy et al. (1997). For example, a refined displacement based beam model can

be obtained with

“(x70 = “006) +<P(x)gC+u1(x)‘P(C) W(X‚C) = W0(x) +W1(X)Q(C) (3)

where uo and wo are the displacements of the beam centerline, (p is the cross section rotation, @(C) and Q(§) are

distribution functions, which should be specified, and 141 (x) and wl (x) are unknown functions of the x—coordinate.

Another possibility is the use of stress based approximations, for example, following from the elasticity solution

of the Bernoulli—Euler beam equations

_ WW 3 "x 2 1

“Jr—WC WTQJZQU—CZ) “Fig—)(‘VC—a?) (4)

where Q and M are the shear force and the bending moment, respectively. Applying the stress approximations,

Reissner (1950) derived the elasticity plate equations by means of the mixed variational equation. The displace-

ment approximations (3) neglecting the terms uld) and mg or the stress approximations (4) lead to the first order

shear deformation beam theory. By generalisation the corresponding models of plates and shells can be obtained.

The stress approximations (4) are not suitable for creep problems because even for the steady state creep solution

of a beam the normal stress 0,, is non—linearly distributed along the thickness coordinate, Odqvist and Hult (1962).
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Let us derive the first order shear deformation beam equations without assumptions for the stress 0X. The trans—

verse shear and the transverse normal stresses are then approximated as follows

23;?) Oz = q—S‘JLCQW) W0 = v(1)— w(—1) (5)

 

sz Z

is a given function satisfying the boundary conditions w'(:t1) : 0. The variation of the work of the internal

forces W,- in equation (2) can be written as

I
_5Wi: 1

N
I
W

1 1

// 6(1xzyxz + 6182) — (’szö’txz + szöcsz — Gxöex)d<;dx (6)

0 —1

With the approximations (5) and the linear strain—displacement equations 8x = uyx, Ez = WK, and 'yxz : u7z + w7x we

obtain

l 1
l

[9211/ /am“+ “280‘1ch = / [5(Qw’ — Qü) + äöwoc,— 1) — aw] dx (7)

0 —1
0

with

l 1
2 1 1

W) : %w(x,é)w'(€)d§ am =m“(aw-(961g, (8)

Let us assume the additive split of the total strain tensor into an elastic and a creep part 8U : +, and

to be known functions of the coordinates x,§ for the fixed time variable. Further we will use the linear through—

the-thickness approximation of the axial displacement u(x‚ : uo(x) + C(p(x)h /2. With these assumptions the

underlined term in equation (6) can be transformed into

I

‚ ‚ 1 „ ‚
0/ [N 6140+M6cp+mQöQ+yc 5g} dx (9)

with the shear modulus G and

l 1

2

Noe) = b—f / ox<x‚c>dc W) = ’% /5x057:de (10>
_1

—l

l 2 1 l 1

z = „7% w’ (M Wx) = %fi2(x‚C)u/'(C)dc (11>

After summing all terms in equation (2) we obtain the following variational equation

l

l / _ ~ ‚ „, l „r

O/[(Q—M)5(p-(Q +q)öw—Nöuo+ <(p+w —mQ—y€>5Q]dx:O (12)

Assuming the variations of the functions uo, (p, W and Q to be independent equation (12) provides the following

ordinary differential equations

N’=0 M’—Q=0 Q’+q:0 Q=thk(<p+W’—?”) (13)

The first three equations are the classical equilibrium conditions of the beam. The last equation is the constitutive

equation connecting the shear force and the averaged shear strain. From this equation and with the assumed linear
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through—the-thickness approximation of the axial displacement we obtain

h -‚ h Q(x) h- .
“(199— 14000 — CEW (x) + Cim + CEYC (X)

The second term is the rotation of the normal to the centerline (Bernoulli’s hypothesis), the third term denotes

the influence of the shear force in the sense of the Timoshenko theory and the last term is the contribution of

the averaged creep shear strain. The coefficient k and the average of the creep strain V’ are unknown while the

function \V'(C) is not specified. The parabolic shear stress distribution function according to the solution of the

elastic Bernoulli beam w‘(§) z 1 —— C2 yields the classical shear correction factor k = 5/6 for a homogeneous

rectangular cross section. Let us consider the classical steady state creep solution of a Bernoulli beam (e.g.

Odqvist and Hult, 1962). Assuming the Norton-Bailey creep law we obtain

The stress Ox can be expressed as

 

W” 1/" h 1/" M(x) n
: __ (l/n)-1 _ Z (l/n)-1 Z_—we < a )ICI C<2> WICI c a mm)

After inserting this equation into the equilibrium condition

2

(5m + 212mg 2 O (14)

and the integration with respect to the C coordinate, the distribution function can be obtained as

w‘(C):1—C2ICIW”)‘1 (15>

Inserting this function into the first equation (11) we obtain k z (3n + 2) /(4n + 2). Setting n = 1 this equation

yields the shear correction factor of elastic beam with rectangular cross section. Since the value of n varies

between 3 and 10 for metallic materials we can estimate, for example, if n : 3; 10, k 2 11/ 14; 16/21 respectively.

It can be seen that k in the case of steady state creep is influenced by the creep exponent. The value of k decreases

with increasing creep exponent (for n —> eo we obtain kw : 3/4) and consequently with increasing creep strain

rate. Because the effect of damage is connected with the increase of the creep strain rate, the decreasing of the

shear correction coefficient can be expected if damage evolution is taken into account. In addition, if the damage

rate differs for tensile and compressive stresses, the thickness distribution of the transverse shear stress will be

non—symmetrical. In this case the function w' cannot be selected a-priori.

5 Numerical Estimations

In order to solve the creep problem for a beam numerically we formulate the variational problem with uo, (p and

Q as principal unknowns for a fixed time variable. First we specify the function of the transverse shear stress

distribution as \II'(C) = 1 — C2. Assuming that the shear force Q satisfies the equilibrium condition Q’ : —q and

the static boundary conditions (if prescribed) at the beam edges, and the functions uo and (p satisfy the kinematic

boundary conditions, the variational equation (12) can be transformed into

l

/[N’8u0+M5cp’+ ((p—G—lthEQ—V‘r)ÖQ+Qöcp}dx:0 (16)

O

From Hooke’s law and the assumed approximations follows

sax, C) E [um + cgcp’oc) — are, C)

1 — v2

slat) = E wo—v[us<x)+c2<pxx>1+ve:’(x‚c>+e:'<x‚c>

 

+VGZ(X7 (17)
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whereas Cl is determined according to equations (5). Inserting the normal stress 03; into the equations defining the

stress resultants (10) we obtain

N(x) z EAugoc) +athq(x) — Nero) M(x) = EI<pb(x) + aMthäoc) — M” (x)

l l

-1 MQLMQ _1 WQ—WU
aN — 2—/1 WO d§ aM _ 4_/1———w0ng (18)

1 2 1

N"(x) ab; /e;'(x‚c>dc Mm) =Eb—Z— [aroma
—1 —1

where A : bh and I = bh3/ 12 for the rectangular cross section. Assuming that £§r(x,§) and y”(x) are known

functions for a fixed time variable, the equation (16) can be written as follows

1

EA H 1
5/ [Tr/02 + To” —mg+Q<p+vqh(aNu6 + haM(p’) — M”(p’ — N654) — Wg dx 2 6H 2 o (19)

0

Let us assume that the beam is uniformly loaded and q(x) : qo. Then the shear force can be specified as Q(x) z

Q0 — qox‚ with Q) as an unknown reaction force at the edge x z O. Further we can specify the unknown functions

uo and (p as follows

l l

woo) = Eastman W) = Eszgum

where S„(x) and Sq‚(x) are the vectors of trial functions and au and 21¢ are the vectors of unknown coefficients.

Applying the Ritz method we obtain from the conditions 113” = O, I'Laq, : O and HQO : 0 the following set of

linear algebraic equations

l I

/s;T(x)s;(x)dx a. z —vqohaN[S„(l) — s„(0)] + /N"(x)s;(x)dx

0 0

l ll

/Sg(x)S£D(x)dx am + Qo/Sq, (x)dx = —quh2aM[S(p(l) — S(p(0)] + /M”(x)S:p(x)dx (20)

0 0 0

11%;
1 1

Q0 2 + l EI/Sg(x)dxaq‚——/if’(x)dx

0 0

For statically determinate beams the last equation in (20) is identically satisfied. The solution provides the three

unknown functions uo, (p and Q at the current time step. Then the normal stress ox follows from the first equation

in (17). By some transformations this equation can be formulated in terms of the stress resultants

cm, 0 = gm)+N"<x)1+C§[M<x>+M"<x)i — Esra. C) +voz<x, o (21>

After inserting this equation into the equilibrium condition (14) and integration with respect to the Z; coordinate

we obtain the transverse shear stress as follows

C
2

w, C) = $0 —mm+M"'<x)] — äm 1>N"’<x> + %famodc (22>
—1

The obtained expression does not correspond to the assumed single term approximation of the transverse shear

stress (5). Since the function Q(x) is known, we can minimize the residual

  

1

/ [H2979 — ZQAOC) WW?) Q(X)dx = 0 (23)

o
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From this equation we obtain

WC)

 

Ä

= gamma —c2> -a2(1+C)+/f”(€)dC (24)
—1

with

[Mandates + qochwxwx tN"<x>Q<x>];:g + qo Of’Ncrmdx

   

h
a1 = l a2 = Z l

IQ2<x>dx th<x>dx
O l O

2 [2%, c>Q<x>1;:’0 + qofew, odx

f"(§) = ET , 0

game

The computed function w'(C) provides the shear correction factor k and the averaged shear strain 7”, equations

(11). Then the functions depending on the x coordinate must be recalculated at the current time step according

to the equation (20). The iteration cycle can be repeated until the value of k reaches the desired accuracy. For

the known stresses and the damage parameter at the current time step the constitutive model (1) yields the rates

of creep strain and damage. From these the new values for time t + At can be computed using the implicit time

integration procedure

affix, Qt + At) = affix, Qt) + At[(1 — mega, Qt) + 9e30, Qt + At)]

(0(x, Qt + At) = (1)(x,§,t)+ At[(1— 9)C0(x, Qt) + 9(1)(x‚ Qt + At)]

ef;(x,Q,0) = O (i)(x,Q0) : 0 w(x, Qt) < 03*

Details of the Ritz method and the time step procedure are presented in Altenbach et al. (2000a) and Naumenko

(1996).

Figure 9 presents the simulation results for the uniformly loaded beam with clamped edges. For the calculations

we set l : 1000mm, b = 50mm, h : 100mm and qo : SON/mm with l as the beam length. The material model is

a) b)
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Figure 9. Time Dependent Solutions of a Clamped Beam a) Maximum Deflection vs. Time, b) Shear Correction

Factor vs. Time, 1 — Bernoulli—Euler Beam Theory, 2 — First Order Shear Deformation Theory with

Parabolic Shear Stress Distribution, 3 — First Order Shear Deformation Theory with Modified Shear

Stress, 4 — Solution Using the ANSYS Code with PLANE 42 Elements

the same as that used for the pipe bend analysis. The curve 1 on the Figure 9, a) is the time dependent maximum

deflection calculated by use of the Bernoulli—Euler beam theory. The corresponding equations and the numerical

procedure are presented in Altenbach et al. (2000a). The curve 2 is obtained using the beam model with the

parabolic transverse shear stress according to equations (4) and the shear correction coefficient as 5/6. The curve
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3 is the solution based on the equations discussed above with modified transverse shear stress. The curve 4 is the

ANSYS code finite element solution obtained with plane elements PLANE 42. It is obvious that the Bernoulli~

Euler beam theory cannot adequately predict the deflection growth. Further, the first order shear deformation

theory underestimates the deflection particularly on the last stage of the creep process. By modification of the

transverse shear stress distribution function a better agreement between the elementary beam theory and the plane

stress solution is obtained. Figure 9, b) presents the dependence on time of the shear correction factor. With

decreasing value of k we can conclude that the influence of the shear correction terms in discussed equations

increases.

The results for the beam show that the modified shear stress influences the deflection growth in the creep—damage

process. On the other hand if we neglect the damage evolution, the steady state creep solution provides the shear

stress distribution close to the parabolic one, equation (15). From the beam equations we can conclude that the

standard first order shear deformation theory can be applied for the creep analysis if damage effects are negligible.

If damage evolution induces the stress state dependent material response, the transverse shear stress distribution

becomes significant. The average of the transverse shear creep strain and the shear correction factor contribute to

the time—dependent solution.

Let us emphasize that in the case of plates and shells the shear correction factor is additionally responsible for

the boundary layer stress distributions. The boundary layer solutions are known from the closed form solutions

of the elasticity plate equations (e.g. Reissner, 1990). In the case of creep this kind of the solution is important

for the time dependent stress redistributions. As we observed in the pipe bend analysis the solutions based on the

shell and solid models disagree if the stress state dependent damage evolution is taken into account. Particularly

both the models provide different edge zone stress redistributions. Additional plots of illustrating boundary layer

effects for the pipe bend in the elasticity and creep solutions are presented in Altenbach et al. (2000b)

6 Conclusions

We discussed non—linear time—dependent solutions based on the first order shear deformation equations of beams,

plates and shells in connection with creep—damage material models. The finite element analysis of the pipe bend

has been performed with solid and shell type finite elements available in the ANSYS code. The results agree

in the case of the linear elastic material behaviour as well as the creep behaviour controlled by the von Mises

stress. If the damage evolution is taken into account the shell and the solid models lead to different predictions.

Particularly, the disagreement is observed on the edge zone stress redistributions. This is explained to be the

result of the dependence of the creep response on the kind of the stress state induced by damage evolution. The

transverse shear stress and the transverse normal stress can essentially influence the deformation behaviour if

time—dependent creep and damage are taken into account. These stresses cannot be accurately computed within

the framework of the first order shear deformation theory. On the beam equations we demonstrated that the shear

correction factor and the function of the thickness distribution of the transverse shear stress have to be modified

by solving the creep—damage problems.

Further investigations should be directed to the examinations of higher order terms in through—the—thickness dis-

placement or stress field approximations of beams, plates and shells in connection with creep damage studies. Par-

ticularly the higher order theories should be discussed with respect to the accuracy of edge zone time—dependent

stress redistributions for various types of boundary conditions.
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