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Preasymptotic Performance of Modified Mixed Finite Element

Schemes for Plates

K. Weinberg

This paper is devoted to numerical investigations on shear—locking free finite element methods for

Reiflner—Mindlin plates recently introduced in mathematical literature. We verify and improve theore—

tically predicted convergence rates and provide a technique to handle preasymptotic instabilities. The

approximation of stress resultants is monitored by benchmark computation. Moreover we give experi-

mental evidence that a new adaptive automatic mesh-refining algorithm yield superior approximations.

Summarizing our comprehensive numerical studies by some typical examples we deduce recommendations

for employing the modified mixed finite element schemes in engineering practice.

1 Introduction

The ReiBner-Mindlin equations of the moderately thick plate

 

2

%div(liI/Idiv19+€(19)>+(Vw—19):O (1)

div(Vw — 19) + kf z 0 (2)

for the vertical displacement w and the rotations of the plate normal 19 are frequently applied and well—

analyzed. Using the standard variational form of (1)—(2) the finite element approximation deteriorates

as the plate thickness t becomes small, known as shear locking. A standard technique to handle such

parameter dependent problems is passing to a mixed variational form. This in general requires deeper

mathematical analysis as an arbitrary choice of discrete ansatz and test spaces yields instabilities.

Very recently, new finite element technologies for an effective numerical treatment of the plate problem

were introduced in the mathematical literature (Arnold and Brezzi, 1993; Brezzi and Fortin, 1991; Lo-

vadina, 1996; Bofii et al., 1997; Chapelle and Stenberg, 1998). But these finite element schemes partially

show a strange preasymptotic performance, which rather suggests errors in our code than the theoreti-

cally predicted convergence rates, Figure 1. This rises the question wether the mathematical predictions,

which are true for small mesh sizes h —> 0, are observed for reasonable sized (but for the mathematical

analysis possibly too coarse) meshes, too.

The aim of this paper is to present our numerical experience with modified mixed finite element methods

for ReifSner—Mindlin plates. Thus we first provide in Section 2 detailed notation, weak and discrete

formulation and different approximation schemes. A technique to avoid instabilities of finite element

computation even in the preasymptotic range is presented in Section 3. We discuss the question of how

to estimate the error of discretization in Section 4, followed in Section 5 by an automatic adaptive mesh—

refining algorithm. In Section 6 we compare the convergence behaviour of different finite element schemes

by some typical examples applying uniform and adaptive mesh refinements. In Section 7 we summarize

our numerical studies on approximation quality of stresses and stress resultants.

As a result we can establish that all presented finite element schemes can be employed in engineering

practice using a simple stabilisation technique. We point out the superiority of a P2 —P2 —-P0 discretisation

with mesh adapted stabilisation parameter a in practical computations.
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Figure 1: Quadratic plate under uniform load: displacement function computed with a = 1

2 Mixed Formulation and Finite Element Discretisation

Following Arnold and Brezzi (Arnold and Brezzi, 1993) we introduce a shear variable 7.

7 == (t—2 - 00W“) - 19) (3)

The weak form of the Reifiner—Mindlin plate model is rewritten with bilinear forms

a(19,w; w) :2 Lew) :C6(cp) da: + /Q a (19 — Vw) . (go — V21) dm (4)

b(19,w; 77) :: /Q(19 — Vw) ~77dm (5)

(ihm) = QM - ndw (6)

for plate domain Q C 1R2,19,go E Hä(Q)2, v, wEHäm), and 'y, 17€L2(Q)2. Here and below, fEL2(Q) is an

applied force (f is already scaled by a factor E753 / (2k(1 + 1/))); the linear Green strain 5(19) :: symDr? :

(flaw/819$;c + 819k /819:vj))j‚k:1‚2 is the symmetric gradient; the elasticity operator C is defined by

1 1/

CT : 6—k[7’ + 1—: tr(7')I] (7)

where tr(T) denotes the trace of 761R“2 and E is Young’s modulus, 1/ is the Poissons ratio and k : 5/6

the shear correction factor of the elastic plate. The critical parameter is the small thickness t > 0 of the

plate which enters (4)—(6) through ß z: 1/(t—2 — a) where a is a parameter with 0 g a < t—2 to stabilize

the discretisation. In (Arnold and Brezzi, 1993) originally 04 is equal 1, the classical (not modified) mixed

model of (Arnold and Falk, 1989) is included for a = 0. In this paper, the function a = a(m) is a possibly

adiscontinuous function, which may vary with 3:69 and may be different on different finite elements.

Thus the continuous Problem reads: Find (w‚19‚*y)€Hä(Q) >< Hä(Q)2 X L2(Q) that satisfies

a(19,w;<p,v) + b(<p‚v;7) = / fv das (8)
S2

b(19‚w;n) — C(vsn) = 0 (9)

for all (v,cp‚17)€Hä(Q) >< HMO)2 X L2(Q)2.

Here, L262) and H1(Q) denote the usual Lebesgue and Sobolev spaces (Brenner and Scott, 1994) and

HMS?) is the subspace of all functions with zero boundary values with dual space H_1(Q). The mathe—

matical analysis in (Brezzi and Fortin, 1997) shows that, in the limit t —> 0 and for a = 0, the natural

space for the shear variable 'y is not L2(Q) but H‘1(div;Q) which consists of all 76H—1(Q)2 with

div 7€H"1(Q) and with norms

)1/2

“VHH—xdwgzi=(H7H%=qo)+lVfiV7H%—mo) (1m( )
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Figure 2: Finite element discretisation

1/2

llH—1(div)mtiL2 2: +

Note, that the L2-norm in (11) has the thickness t as a weight in order to result in a t—independent error

estimation.

The finite element discretisation of (4)—(6) considers discrete subspaces Vh X Wh >< I‘h of Hä (Q) >< Hä (Q)2 ><

L2(Q). Thus the discrete Problem reads: Find (wh,19h,7h)EVh X Wh >< Ph that satisfies

awmwh; am) + Wham) = / m dm (12)
o

5(19h‚wh;77h) — C(WhWh) = 0 (13)

for all (Uh,¢)h,’l7h)EVh X Wh X Ph.

The discrete spaces Vh X Wh >< Ph are T—piecewise polynomials (the index it may refer to the mesh-size

of T but we neglect further sub—indices such as 77,, ah etc.) based on a regular triangulation T of Q, i.e.,

T is a finite partition of Q in closed triangles; two distinct elements T1 and T2 in T are either disjoint,

or T1 n T2 is a complete edge E or a common node of both T1 and T2. The triangulation satisfies the

minimum angle condition (the angles in the triangles are assumed to belong to the interval (Cg, 7r — (29)

for some positive constant ca and so they are bounded uniformly away from 0 and 77). The set of all edges

in T is denoted as 8 and U8 is the union of all edges, i.e., the skeleton of all boundaries of elements in

T. With each edge, we associate a unit normal vector 71}; which coincides with the exterior normal if the

edge E belongs to the boundary 69. The diameter of T is denoted as hT and the length of E is hE. For

compact notation, let hTELOOm) and hg€L°°(U6) be given as T— resp. 5—piecewise constant weights

thT :2 hT and hglE Z: hE (TET; E65) (14)

Given T, 73k(T) denotes the linear space of T—piecewise polynomials of degree S k

mm := mean) ; VTET, vthEPk(T)} (15)

where 73k(T) denotes the vector space of algebraic polynomials of total degree 3 k regarded as mappings

on the domain T C 1R2. Moreover let 83(T) be the space of T-piecewise cubic bubble functions.

83(T) z: {u€C(Q) :VT€T‚uIT€733 and u : 0 on 8T} (16)

We restrict our numerical investigation to conform low order finite element schemes, i.e., constant appro—

ximation of shear variable 7. Following Arnold and Brezzi (Arnold and Brezzi, 1993) the finite element

space (Figure 221)

V}, x W x r,, :2 (792(7) n Hä(Q)) x ((7710) e 63(T)) nHä(Q))2 >< 730(7)2 (17)

yield a stable discrete problem with unique solution (19],, um, 7h). With the exact solution (19,7157) and

maximal mesh~size h —> O there holds

II w - Um NH; + II I9 - 19h lng + II 7 — ’Yh IIH—1(div)nt.L2 S ch(|l w IIH2 + II 19 IIH2 + || 7 IIH‘) (18)
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The positive constant c = c(a‚ Q, k, Cg, is independent of mesh size h and the plate’s thickness t. Note,

though (18) formulates strong restrictions on the continuous solution it yield only suboptimal, i.e., linear

convergence. By a modification of parameter a, a z a(T), Chapelle and Stenberg gained in (Chapelle

and Stenberg, 1998) an improved a priori error estimation (cf. below).

Lovadina analyzed in (Lovadina, 1997) a finite element space (Figure 2b)

V}, >< Wh >< Ph 2: (792(7') n x (732(T) n Hä(Q))2 x P0(T)2 (19)

which leads to a stable scheme and quasi-optimal a priori error estimates in the sense that there exists

a (h, t)-independent positive constant c such that

H19 - 19h lngm) + H w — whHHgm) +|17 - 7h llH—1(div)m.L2 (20)

S C(millg/h H 19 — 45h “1113(9) + 1”}th || w — Uh lngm) + nigh || ”Y — 77h llH—1(div)m.L2)

In case of (19) and a smooth continuous solution, the poor approximation of the shear yields a convergence

Order 0(h) (Lovadina, 1997). Since the approximation errors of the remaining two best-approximation

errors are of higher order, a subtle choice of the parameters a and ß is expected to improve the conver—

gence to 0(h3/2) due to (Bofi‘i et al., 1997). We specify these effects in Section 3 and 4 and stress that,

at least in the a posteriori error analysis, the constants a and ß = 1/ (7f‘2 — a) shall be monitored as

well as t and h.

3 Stabilisation Technique

In a first numerical approach we apply the discretisations on a simple problem with known solution, cal-

culated analytically in some characteristic points by Timoshenko and Woinowsky—Krieger (Timoshenko

et al., 1987). A quadratic plate (x,y)EQ :: [—0.5,0.5]2m with thickness t : 0.01m is all side clamped

and uniformly loaded, f = —1000N/m2, E = 10.92 - 106N/mm2, 1/ = 0.3. The maximal deflection is

expected to be in the plate center. By symmetry we calculated only one quarter of the domain [0, 0.5]2m

with an uniform initial mesh 71 of 8 finite elements (4 squares, each divided into 2 triangles). Starting

computation with this coarse mesh and a = 1 as in (Arnold and Brezzi, 1993; Braess 1997) both finite

element discretisations fail, the system shows spurious modes, Figure 1. (Note, in Figure 1 the whole

plated domain is plotted and for displaying each finite element is divided into 4 triangles.) Only by refi—

ning (here with more than 2000 finite elements and a : 1) we obtain correct approximation. Satisfying

solution quality we compute with the coarse mesh 7] enlarging a by a factor of 10 1000. Even larger

numbers of a let the system become too stiff (cf. Weinberg, 1999).

Extensive numerical studies confirmed the discrete problem (12713) to be asymptotically stable against

a with 0 < a < 77—2, but preasymptotic performance as well as convergence rates strongly depend on it.

Summarizing our experience we prosecute two strategies for choice of parameter a. First we adapt it to

the finite element mesh size with a = 001”) due to (Weinberg, 1999; Chapelle and Stenberg, 1998),

computing elementwise

_ 1

hä‚+t2
a = a(T) (21)

Secondly, we choose a model dependent but fixed parameter a. Using a characteristic size of plate domain

I : 1(0) and plate thickness t, l >> t, we employ

a = — (22)

Both numerical rules, (21) and (22), imply 0 < a < t2 and avoid spurious modes on coarse meshes. In

the examples of this paper we set the characteristic plate size I : 1m.
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Figure 3: Quadratic plate: discretisation error with P2 — PlB — Po fem

4 Global a posteriori Error Measure

The numerical validation of the theoretically predicted convergence rates requires comparisons with the

unknown exact solution. But the design of a benchmark with known exact solution to (1)—(2) is difficult:

if we prescribe a general vertical displacement w and rotations 19 = (191,192) of the plate normal, this does

not necessarily satisfy (1) (while we could choose f to satisfy Even more problematic is a typical

choice of (111,19), which reflects the finite element’s performance in practice. One possible remedy is the

relation to the Kirchhoff plate model

E233

12(1 :72)AAw — f — 0 (23)

as employed below. The main drawback is that the solution w of (23) is a good approximation to a

solution of (1)7(2) only for very thin plates where Reifiner—Mindlin’s theory is not designed for. The

remaining option is a model solution from a very fine finite element approximation with a reasonable

method and mesh for further reference. Since mathematical results are usually provided for the error in

energy (or equivalent) norms only it is not sufficient to compare a typical displacement or moment at

one point of the domain. Hence, one needs the entire mesh and the nodal values from that mesh which

is not easy to handle.

Thus we established in (Carstensen and Weinberg, 1999) a new method which allows an error represen—

tation in natural energy norm by one (problem depending) constant C and computable quantities known

from (current) finite element solution. The constant 0 could be computed from f and the unknown w.

But in practice we may use a finite element calculation on a very fine mesh or an extrapolation techni—

que to provide this constant once for every problem. This enables a global a posteriori error estimation

without any known solution. We will employ it below to assess approximation quality of different finite

element schemes.

Here we start verifying the a priori error estimations of Section 2 under its strong assumptions (clamped

boundaries, no singularities). We compute the quadratic plate from Section 3 with thickness 15 : 0.001m,

but now we impose a load f enforcing the Kirchhoff solution

May) : (w - 1/2)2(93 + 1/2)2(y - 1/2)2(y + 1/2)2 (24)

We denote the H1“norm of the difference between the Kirchhoff solution and the finite element solution

for the displacement as well as for the rotation vector with

€(w) I: II w - 10h “113(9) and 6(19) ==||19 - 19h HHgm) (25)
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Figure 4: Quadratic plate: discretisation error with P2 — P2 w P0 fem

and analogous the shear error in L2—Norm whereby the shear stress in the Kirchhoff theory is introduced

by additional equilibrium conditions (Timoshenko, 1987)

6(7) 3: H 7 ~ 'Yh “mm (26)

The norm (11) is not computable and so it is estimated owing to an inverse estimate (Brenner and Scott

1994) by

“(NIH-1(9) S CllhT‘JllL2m) (27)

for T—piecewise polynomials q. The estimate (27) is applicable here because the finite element soluti-

on and, as an exception, the analytical solution is a T-piecewise polynomial. Ignoring constant c, we

approximate the normed solution error

|| w ‘ wh HHgm) + H19 — 19h “113(9) + H 7 - 'Yh + 04W — 19h — V011 — wh))||H—1(div)mL2 (28)

by

e(w‚19‚7)::(e(w)2+ 6(19)2+(h27+t2)||7— 7h + aw — 19h — von ~ we) Him) + (29>

h3rlldiv('yW + aw — «9h — v<w — wh>>)n%2(m>1/2

Figure 3~4 display the error results from uniform mesh refinements and (a) for constant parameter a

(resp. ß) and (b) for mesheadapted a in (3). (Here and below the error terms are plotted versus the

number of degrees of freedom N in a log/log-scale; owing to N oc h‘2 in two dimensions, a slope —1/2

in the figures corresponds to an experimental convergence rate 1. For comparisons, triangles with slopes

1/2 and 1 are shown in the figures as well.) Single error contributions (dashed lines) show expected

convergence rates (corresponding to Vh7 Wh and I‘h). But the approximation (29) (dashdotted lines)

which in case (a) of constant a yield expected convergence rates of m 1 fails in case of mesh adapted

a Our explanation for the poor convergence in case (b) is that the mesh-depending choice of a is

not well-balanced with the strong norm of the physical shear—error. That norm (29) is not an opportune

measure of discretisation error.

This is underlined by our observation of error convergence in natural energy norm (solid lines)

1/2
eh ;: (1| 01/2509 — 19h) |12 + t—2II 19 — «9h — V(w — wh) n2) (30)
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Figure 5: Relative energy error for various a in the Example of Section 4

Hence, we apply the energy error to monitor the effect of parameter a in (12%(13). From (Carstensen

and Weinberg, 1999) we know that (30) equals the square root of

C — C1/2€(19h) H2 + t—2H V”!th — 19h “2 — 2((t-2 — 00(th — 19h) — 7h; th — (31)

with the real number C 2: (f;w) : IICl/26(19)||2 + t_2|[19 — Vw Given (24) we obtained (f;w) :

2.3324v 10—10Nm as an approximation to the unknown C’.

In Figure 5 the relative error 6N z: eh/x/Ö is plotted for different values of a. We observe the predicted

linear convergence for both discretisations (17) and (19) if a is a small number and a convergence rate of

3/2 for a : 1/ (lt). Even higher numbers of a show no convergence as long as the mesh is coarse. Hence,

a mesh adapted a shows best convergence behaviour, an optimal convergence rate of 2 is obtained for

both discretisations and a = 1/(h%~ + t2).

5 Local a Posteriori Error Estimation and Adaptive Algorithm

The discrete problem is supposed to generate discrete solutions (wh‚19h‚'yh)€Hä(Q)2 >< Häm) >< L2(Q)

which, as a minimal condition, satisfies (12)-(13) for all (11h, dm, nh)€Vh >< Wh >< Ph. Then, for each element

TET, we define our error indicator 77T by

72%: nQT/Tof—divmhmwhmum»? (32)

+ m + a(19h — th) — divC6(19h)|2)da: + hT/t/ |V19h — Dgwh|2dz

T

+

Z hE/ (“7h + am - Vivhll 'nEl2 + |l05(19h)l "”El2) d5
E65, EcaT E

Here, for a T—piecewise continuous function, the square brackets are defined as the jump over the

edges: If E : T+ n Tw is a common edge of two distinct T+ and T_ in T then, for :rEE, the jump

is the limit of C(m + enE) — G(:c — enE) as e —> 0+. Thereby [G] is defined on the skeleton U8 \ öQ of

all inner boundaries of elements (its definition on the boundary 80 has to be specified separately).
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The local contributions 77T to the error estimator 777

1/2

777 z: (z a) <33)
TET

can be computed elementwise (once a discrete solution is known). With (32) we have a reliable a posteriori

error estimate, i.e., (33) is an upper bound for the solution error measured with (28). The proof of

reliability was given in (Carstensen and Weinberg, 2000), its result motivates the usage of the error

indicators (32) for adaptive mesh refinement.

Adaptive Algorithm

(a) Start with coarse mesh 76.

(b) Solve discrete problem with respect to ’776 with N degrees of freedom.

(c) Compute 17T for all T67}.

(d) Compute error bound 771v :2 (ETE77c 77%)1/2 and terminate or go to (e).

(e) Mark element T red ifi” nT Z ä maleeTk 77T].

(f) Red—green-blue—refinement to avoid hanging nodes, update mesh 77C and go to (b).

Red—green—blue—refinement means to split red~marked elements into four congruent elements. The neigh—

boring, not marked elements are split in a way, that ever one longest side is divided. So we avoid hanging

nodes as well as degenerated elements, Figure 6.

 

Figure 6: Redegreen~blue refinement of a triangle

6 Numerical Examples for Practical Error Computation

6. 1 Sheet Metal with a Hole

          

 

 

Figure 7: Sheet metal with hole and initial mesh

First, a rectangular sheet metal with a hole loaded by uniform pressure at half of the domain is computed,

Figure 10, (f vanishes outside the marked region), f : 106N/m2‚ E : 2.1 - 1012N/m2, 1/ : 0.3,

t : 0.1m. The plate is simply supported; we employ hard support (not only the displacements but

also the tangential component of the rotations are forced to zero) to avoid boundary layer effects. By

symmetry the coarse initial mesh consists of 17 finite elements, i.e., N : 126 or N 2 148 degrees of

freedom for P2 — P13 — P0 and P2 — P2 — Po discretisation, respectively.
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The energy error is estimated with (31)7 an extrapolation technique yields C' = 2.444- 10’12Nm (cf.

(Carstensen and Weinberg, 1999) for details). The convergence of relative energy error eN with uniform

mesh refinement is plotted in Figure 8a. Despite of the hole the continuous solution is expected to

be relatively smooth (no singular point). Hence we observe linear convergence rates of P2 — P13 — P0

and P2 — P2 —— Poidiscretisation with a constant number of a (as theoretically predicted for clamped

boundaries, (18), (20)). A mesh adapted a yields an improved convergence rate of about 2. There

P2 — P2 — P0 discretisation slightly better converges than P2 — P13 —— P0 discretisation, but major influence

of convergence rates has the choice of parameter a.
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(a) Sheet metal with hole (b) Lishaped domain

Figure 8: Relative energy error for different finite element schemes

6. 2 Solution Domain with re-entering Corner

In the second example an L—shaped plate [—1, 1]2 \ (O, 1)2m is clamped along the two edges of the domain

which form the re-entering corner and is free at the remaining boundary. The (unknown) exact solution

is expected to be singular near the origin at the re-entering corner even though the load is uniformly

distributed; the material parameters are constant as in Section 3, t z 0.01m.

Figure 8b displays the relative energy error of the four finite element schemes, starting with coarse meshes

(Figure 9a) and refining uniformly but presumably sub-optimal. Both finite element spaces (17) and (19)

converge similar. Due to singularity the convergence rates are smaller than one if 01 : 1/ (It) but may be

improved up to 3/2 in case of a = 1/(h%— + t2).

ReiflneriMindlin’s model is designed for moderately thick plates, hence we compute now the energy error

   

  
(a) Initial mesh 76 (b) Adaptive refined mesh T5 (c) Adaptive refined mesh

T7

Figure 9: Finite element meshes in the example of Section 6.2
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with different plate thickness t = 0.1m,t = 0.01m, and t = 0.001m, Figure 10 (extrapolated constant

C : 0.8366 - 10—13Nm if t = 0.1 and C : 0.787- 10—19/t6Nm else). Obviously thickness t has no

significant influence on convergence rates, the discretisations are really locking free.

To assess the quality of error estimation for a non—uniform mesh, we employed the adaptive mesh-refining

Algorithm (A) of Section 5. The initial mesh 76 and typical meshes 7%„ T7 after 5 and 7 refinement steps

are shown in Figure 9 (here t = 0.01, a : 1/(hä— + 252)). We obtain a significant reduction of error eN up

to convergence rate 2, Figure 10 (here displayed for P2 — P2 — P0 discretisation only). The computation

shows the expected superiority of adaptive refinement techniques.
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Figure 10: L—shaped domain: energy error (31) for uniform and adaptive mesh refinements

7 Approximation of Stress Resultants

7. 1 Example with Kirchhofl' Solution

In engineering practice generally not the convergence rates of finite element methods are of interest but

the computation of plate stresses and stress resultants (what, of course, strongly depends on each other).

Thus we return to the example from Section 4 with analytical Kirchhoff solution (24) and monitor now

the approximation of bending moments. The components of bending moment tensor m are associated

with the continuous solution of (8)~(9) via partial derivatives (Timoshenko et al., 1987).

 

Hence its approximation error is expected to be one order higher than the error of discrete solution

(zu/149mm). For the triangulation T of Q let ICC be the set of all corner points, [Cm denotes the set

of all midpoints of the egdes E, 1C :: ICC U Km. With discrete solution (wh,r9h,yh)€Vh >< Wh >< Ph the

equations (34) yield discontinuous functions. Thus the finite element values referred to in Section 7 are

mean values at K, in the figures linked with straight dashed lines.

Computing one quarter [0,0.5]2m of the plate domain we evaluate the principle bending moments

m1,m11, i.e., the eigenvalues of the bending moment tensor m, at [C along a line from plate center

C to one corner point A. The analytical Kirchhoff solution is plotted for comparison with solid lines,

Figures 11—13. With the coarse mesh 71 we observe a rough approximation where only the P2 — P2 — P0
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Figure 11: Principal bending moments m1, m11
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Figure 12: Principal bending moments m1, m11 of Example 7.1, mesh 73

        

  

  

0.01

o - n _ 4

Ao ox »

—O 02 >

~0.03 '

.om »

—o‚os -

43.06 A» VbPlB—VU lam (12V!

o Pz—PiB—Po vem u=l/[h2+l2)

—v— P2»P2»P0lem Uzi/l

“7 -u- P2—P2—P0 19m u=1/(h2+|2)

— analytical solulion

—o ow A

—o‚„

A

Figure 13: Principal bending moments m1, m11 of Example 7.1, mesh 7},



discretisation with mesh adapted a (21) yield qualitative correct elastic lines. After one step of uniform

refinement (i.e., a finite element mesh 7'2 with 32 elements and approx. 200 degrees of freedom) already

a satisfying approximation of bending moments is obtained. Again the P2 — P2 — P0 discretisation with

mesh adapted 04 yields best quality. This is confirmed in the next refinement step too, where its values

lay completely on top of the analytical Kirchhoff solution. The results of mesh 73 (128 finite elements,

approx. 1000 degrees of freedom) fit the analytical solution very well with all discretisations. From this

practical point of View a further mesh refinement as done e.g. in Figure 7 is redundant.

The superiority of P2 — P2 — P0 discretisation in computation of stress resultants (34) may not surprise.

The discrete space for the rotations Wh contains Prfunctions in (19), whereas (17) approximates the

rotations only by piecewise affine functions (though enriched with bubble functions).

7. 2 Benchmark with Stress Singularity

Finally we compute a rhombus plate with 60~ and 120—degree angles, Figure 14. The plate of side length

5 : 2m is all side hard simply supported and loaded uniformly with load f : 10N/m2, t : 40mm and

material parameters of the example from Section 3. The skewed corners cause stress singularities at the

obtuse angles.

            

  

 

   E

Elf/AVAVAVAV

fizizlnnnn

 

(a) (b) mesh 7'2 (c) mesh T3 (d) mesh 7’3”

Figure 14: Benchmark rhombus plate, finite element meshes and adaptive refined mesh

Figures 15—16 display the principal moments m1,m11 along a line from the 607degree corner A to

the plate center C to the 120—degree corner B. The plotted reference solution is obtained from a very

fine P2 ~ P2 — P0 discretisation T6 (8192 elements, approx. 66000 degress of freedom), it coincides

with a reference solution cited in (Stein et al., 1987). Morley (Morley, 1963) calculated an analytical

solution based on (23) by expanding Fourier series at characteristic points. The values of our reference

computation almost agree with (Morley, 1963), through slight differences might be caused by solving

Reißner—Mindlin’s formulation (8)—(9) instead of Kirchhofi theory in (Morley, 1963) but also by setting

boundary conditions (here: hard simply support). The values in Table 1 (computed at the center of
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Figure 15: Rhombus plate: principal bending moments along AACLB computed with mesh 73
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Figure 16: Rhombus plate: principal bending moments along AiC‘B computed with mesh 7},

the rhombus plate) as well as in Figure 15 and 16 are scaled, with w 2: w >< 102Et3/(12f(1 + V)) and

7711/111: mI/II/(f >< 32)-

The bending moments computed with an initial mesh of 8 finite elements hardly corresponds with

the reference solution. Figure 16 and 17 display the elastic lines obtained with meshes 7'2, 7}, after 1

and 2 steps of uniform mesh refinement, respectively (32 resp. 128 finite elements). Again we observe

a satisfying approximation of the stress resultants even with rather coarse finite element meshes and

obtain best results applying the P2 — P2 — P0 discretisation with mesh adapted a.

   

mesh wo m10 mHC

reference (Morley, 1963) 4.096 4.25 3.33

P2 — P1“ — P0~fem, a = 1/(lt) 7'1 1.0342 0.7896 0.3881

72 3.1145 3.2170 2.1298

7'3 3.8291 3.9715 3.0045

P2 — P15 — PO—fem‚ a 2 mm, + t2) 71 0 1.4135 0.7415

7'2 3.1546 3.3423 2.2356

73 3.8397 3.9859 3.0059

P2 — P2 — PU—fem, a z 1/(11) Tl 2.1412 2.7205 1.8659

7'2 3.7701 4.0285 3.3232

7;, 4.0541 4.2584 3.4074

P2 — P2 — Po—fem, a z 1/(62, + t2) 7'1 1.4135 5.1986 3.7781

72 3.8994 4.4235 3.6657

7;, 4.0653 4.2927 3.4130

7'6 4.0143 4.2530 3.3288

          

Table 1: Displacement wo and bending moments m10,m110 in the center C of rhombus plate

Exemplarin Figure 14 displays a finite element mesh generated with Adaptive Algorithm (A) after 3

refinement steps, 7;“. Its computational effort is almost equal to uniform mesh 7}, (1441 degrees of free—

dom, P2 — P2 — P0 discretisation) but we compute superior results, wo : 4.0760, m10 : 4.2702, mug :

3.4249.

8 Conclusions

We illustrated the numerical performance of finite element schemes based on a modified mixed formula-

tion of the Reifiner—Mindlin equations. All presented schemes are locking free and — employing simple

stabilisation techniques — stable in the preasymptotic range, too. The convergence rates of these sche-

mes may be improved by a mesh adapted stabilisation parameter a and, additionally, by our automatic

adaptive mesh refinement algorithm.

263



Summarizing we recommend a P2 — P2 — P0 discretisation (19) with (21) for application in engineering

practice. This finite element method yield optimal approximation quality.
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