
TECHNISCHE MECHANIK, Band 20, Heft 4, (2000), 295-304

Manuskripteingang: 25. August 1999

On the Existence of Periodic Solutions of a Gyrostat Similar to

Lagrange’s Gyroscope

A. I, Ismail, L. Sperling, T. S. Amer

In this paper, the problem ofthe existence ofperiodic solutions of motion ofa gyrostatfixed at one point under

the action ofa central Newtonian force field, and a gyrostatic momentum [i (i : 1,2,3; l1 : 42 = 0, {/3 ab O)

similar to a Lagrange gyroscope is investigated. We assume that the center of mass G of this gyrostat is

displaced by a small quantity relative to the axis of symmetry, and that quantity is used to obtain the small

parameter 8 (Elfimov, 1978). The equations of motion will be studied under certain initial conditions ofmotion.

The Poincaré small parameter method (Malkin, 1959; Nayy‘eh, 1973) is applied to obtain the periodic solutions

of motion. The periodic solutions for the case of irrational frequencies ratio are given. The periodic solutions

are geometrically interpreted to give the forms ofEuler angles.

1 Statement of the Problem and Equations of Motion

Consider the motion of a dynamically symmetrical gyrostat relative to a fixed point O, in response to a

Newtonian attraction k of another point O1 and constant gyrostatic momentum l i(i=l, 2, 3) in which

A = (2 = 0 and E3 is different from zero. At the fixed point O , two coordinate systems are considered; a fixed

one OXYZ, in such a way that the point 01 lies in the negative part of the Z—axis, at a constant distance

R = OO1 , and another moving one Oxyz , fixed to the body, whose axes are directed along the principal axes of

inertia of the gyrostat at O see (Figure 1).
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Figure l. The Force Component
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The equations of motion and their three first integrals are
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Here A, B, and C are the principal moments of inertia; xG , yG, and zG are the coordinates of the center of

mass; p, q, and r are the angular velocity components; y, y’, and Y” are the directional cosines of the vertical

in the coordinate system attached to the body; 8 is a small parameter; M is the mass of the gyrostat; g is the

acceleration due to gravity; 7» is the constant of gravity of the attracting center; and p0, qo, r0, YO, yE), and ya

are the initial values of the corresponding variables.

One of the particular solutions of this problem is the Lagrangian case (A = B ‚t C, xG = yG = O)

p=q=0, r=r0, Y=Y’=O, y”=l.

2 The Proposed Method

In this section, Poincai‘é’s small parameter method is applied to obtain the periodic solutions for the equations of

motion of the considered problem. From the first and the third equation of (2), we can write

Yi:1_3f1 ’i :r10_€f2 (4)

where

1 1 2

=—F+—eF +-~
f1 2 l 8 l

1 8 2 2 32 9
= F —F +—— F —F +— F —F '+--- 5f2 2br10( 2 20) 8br10( 1 10) 8b2r1_:)( 2 20) ( )

F1=Y12+Yi2 F2=p12+q12—271+Fl(k+1)

Thus, F10 and F20 are the initial values of F1 and F2, respectively, and the dots indicate terms of higher order

of smallness with respect to 8 . Eliminating Y; and r] in equations (1) one can obtain the following system
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where
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de r 0%
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P1=P2+hY2+CI QI=q2+hY2

Y1:(1+ßh)Y2+ßP2+C2 Yi=(1+l3h)Y/2+BCIZ

hz—(1+k)/J_r‚/(br10+i;)2+4(1+k)

B=[—(br10+£§)i‘/(br10+€:)2+4(1+k)]/2(1+k)

C1=r10/(l+k+r10€:—arl%) C2=l/(l+k+r10€:—arl%)

k1=h—hnoB+anul+Bh>—Bo+th1+k>—o+fih>@ (w

x2 =—h—hq0Ba+qo(l+Bh)+B(l+Bh)(1+k)+Bh,€:

G1=h(f2Yi_Q1f1)—a(1+l5h)f2%+k(1+l3h)fil’i

G2 =h(f1P1—f271)+a(1+ßh)f2p1—k(1+ßh)f1Y1+fi(1+ßh)

G3 :Bszqi‘kfi%)—(f2Yi—Qifi)

G4 =f2Y1—P1(f1+aßf2)+ßf1(kY1—1)

Let Ä] /7t2 = n1 /n2 be a rational number; this can be done by a suitable selection of rO . The general solution for

the generating system of (6) is periodic one with period T0 = Zum/XI = Zünz/Äz . Let us formulate the problem

of determining the 130(8) —peri0dic solutions of system (6) with a fairly small value for 8 which for 8 = 0 would

reduce to a solution of period T0 of the generating system. Consider the following substitution

‘5 =(1+£0<)T (8)

where 0t is a function of the small parameter 8, which is to be determined. The problem now reduces to the

determination of periodic solutions of period T0 of the new system of equations (Malkin, 1959)

where

dpz dqz
—=?\, +£H ~—=—7t +£H
dT 1412 1 dT 1P2 2

(9)

dry ‚ dv’
—‘=?t +£H ' —2=—?t +£H
dT 2Y2 3 dT 2Y2 4

Hl=7t10Lq2+(1+€oc)GI H2=—7L10L192+(1+€oc)G2

H3 =7t20cy’2+(1+soc)G3 H4 2~k20cy2+(1+eoc)G4 (10)

Hi =H§‘)+8H}2)+62H,~(3)+-~

3 Construction of Periodic Solutions in the Case that X] NZ] is Rational

We seek the periodic solutions of system (9) in the form

172(7",€)=M1 cos?»1T+M2 sin ?»,T+Zl

q2(T‚8):—M1sinÄ1T+MzcosÄ1T+22 (11)

YZ(T,8):M3COSÄ2T+23 y’2(T,e):—M3sin>„2T+24

<2i=Z€CWULi=Lzl4>
11:1
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with the initial conditions

p2(0,€):M‚:M1(0)+m1 q2(0,i:)=/\42=M§0>+m2

(12)

72(0,£)=M3 =M§°>+m3 y’2(0,£)=0

The periodic solutions of system (6), which correspond to the T0 -periodic solutions of system (9), are of period

TO = (1+80t)T0. We represent 0c as 0L =0L0 +m4. In accordance with Poincare’s method we vary the initial

conditions, which in this case coincide with the arbitrary constants of solutions of the generating system. We

also vary (x so as to have solutions (11) of periodic forms, and seek mi( i=1, 2, 3, 4 ) in the form of functions

of E which vanish as 8 = O. The substitution of the first approximation for p], q], y], and y; from (7) into (5)

gives

F1”) = C22+BZ(M12 +M22)+(1+Bh)2M32+213C2(M1cos7t1T+M2 sin KIT)

+2C2(1+Bh)M3 cos9t2T+2B(1+B/1)M3[M1cosOtl —7t2)T

+M2 sinO»1 —?t2)T]

F2”) = C12 —2C2 +(M,2 +M22)+h2M32+2(C1—ß)(M1cosÄlT

+M2 sin XIT)+2(Clh—l 43th cos >t2T+2hM3[M1 cosOt, —x2)T (13)

+M2 sinal —7t2)T]+(1+k)Fl(O)

From (7) we can rewrite the functions Gi( i = l, 2, 3, 4) in the following short form

G1=L]CI2+L2Y’2 G22—(L1P2+L2Y2)+L3

(14)

where

Li =—a(1+Bh)f2+h(sz—fi >+kB<1+Bwi

L2 =—ha(1+Bh>f2—h[hfi —(1+Bh >f21+k<1+Bh>2fi

L3 =(1+ßh)[aC1f2+fl(1—kC2)]+/1(C1f‚—C2f2) (15)

L4=ßf2(a-1)+f1(1—kß2)

L5 :h(ßaf2+f1)”(1+ßh)f2—kß(1+ßh)fl

L6 =‘B1aC1f2+fi(1—kC2)l—(C1f1‘C2f2)

If we eliminate terms in the previous formulas that are independent of S and determined by the generating

solutions, then they obtain the following form

L50) =[v,.1+Vi2(ME+M§)+vi3M§]+vi4(M1cos>t1T+M2 sin xlT)

16

+Vi5M3c0s9t2T+Vi6M31Mlc0s(7t1—X2)T+M2sin(?t1—7tZ)T] ( )

where V[j(i, j : 1,2,...‚6) are functions of parameters a and r0 which can be obtained by formulas (4), (13), and

(15).

The coefficients Cf") (T) in the equations (1 1) are determined by equations

dCf”)(T)

dT

„ n ch T

=Ä1 CE )(T)+Hf )(T) —;T()=—>il C1(’“(T)+H§”>(T)
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dCä”)<T> dCPU> _=x CW T +H(") T ———_—x C“) T)+H(”>(T) (17)
dT 2 4 ( ) 3 < ) dT 2 3 ( 4

with the initial conditions

C,.(">(0)=0 (i=l, 2, 3,4) (18)

For n = l, we get the solutions of (17) in the form

T

Clm(T):7qlJmll(u)sinÄ1(Tmu)du

0

T

CM) = M] J¢21(u)sin A] (T —„ )d„

0

(19)

T

CWT) =75] ,l(P31(”)5in 7‘2(T—”)du
o

T

CÄ1)(T)=7C21Jcp4](u)sin7»2(T—u)du

0

where

M‘cp„(T)=sm+S„(M1cosx,T+M2sin xlT)+S„coszx1T+513sin2xlT

+Sl4M3 cos7t2T+S15 M3[M1cos(?t1—7t2)T+M2sin(?tl—7t2)T]

+516M3[Mlcos(7»1+Ä2)T+M2 sin(?»1+?t2)T]+S]7 005(2Ä1—Ä2)T

+518sin(29tl —x2)T+S„M32[M1cos(x, —2Ä2)T+M25in(kl —2x2)T]

+Slloc032Ä2T

Ml(p21(T)=—521(M1sin7t1T—M2cosle)—Szzsin2k1T+SZ3cos27t1T

—S24M3 sin 7LZT——S25 M3[M1 Sin(7\‚] —Ä2)T—M2 cosOtl —Ä2)T]

—S26M3[M1sin(?t1+7t2)T—M2 cosOtl +9t2)T]+S27 sin(27»1—Ä2)T

+528 COS(27\.1 —>„2 )T—5291v13mI sinmtl —27t2 )T—M2 cos(Ä1—2Ä2)T]

~52“) sin2Ä2T

7‘51931(T)=V61+(V63‘%V55 )M3(0>2 "33V55Mim2 COSZMT‘L‘“

‘zlnp4l(T):—S41(M1sinÄIT—MzcosÄIT)—S42sin2Ä1T+S43cos2Ä1T

—S44M3 sinÄZT—S45 M3[Mlsin(kl —Ä2)T—MZCOS(Ä1—ÄZ)T]

—S46M3[Mlsin(>„l +x2)T—M2cos(x‚ +Ä2)T] (20)

+547sin(2x1—x2)T+S48cos(2>„l —7t2)T—S49M32[Mlsin(7tl —2?»2)T

"M3COS(7\‚1—27\‚2)]-S4105in(2)\‚2T)

and S“, 52i, S31, 54,- (i = 1,2,- --,10) are constants that can be obtained easily.

Substituting (20) into (19), one gets

C1(1)(To) Z (M2 E11+R11)T0

C§1)(T0)=(M1E11+R21)T0 (21)

CÄ1)(TO):—(M3 E31 +R41 )To
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where

l 1

E11 2—3511 E31=—§S44
(22)

It is shown in (Malkin, 1959) that for the solution (1 l) to be T0 —periodic , it is necessary and sufficient that

w12p2(T0‚8)-p2(0‚e):0 W22q2(To‚8)-q2(0‚8):0

<23)

wg zv2(TO‚e>—yz(o‚e>=0 W427’2(T0‚8)—7’2(0‚8)=0

where xvi (i=1, 2, 3,4) are functions of M,- (i=1, 2, 3), 0c, and 8. The equalities (23), which determine

M50), (x0, and mi (j: l, 2, 3; i=1, 2, 3, 4), are not independent due to the existence of the first integral in

system (9), which corresponds to the second formula in (2) (Elfimov, 1978). It can be shown that the third

condition is a corollary of the remaining if M3 i 0. By analogy with the statement in (Arkhangel’skii, 1963), it

is possible to consider one of the quantities M30) (j = l, 2, 3) or (x0 as an arbitrary constant, and one of the

m (i = l, 2, 3, 4) as an arbitrary function of E, which vanishes as a ——> O .

Reducing equalities (23) by e and equating to zero the terms at zero powers of 8 ‚ yields the following

necessary periodicity conditions

C§‘>(TO)=C§”(M1,M2,M3,a)=0 (i=1,2,4) (24)

which are in accordance with (21); one thus has

MZEH+R11=O MIEH+R21=O M3E31+R41=O (25)

The expressions of R11, R21 and R41 are nonzero only if Ä] 7»? is equal to 2,1/2,1 or —1 and are of the forms

i) for 217521 =2:

1 l

R11=0 R21=EV25Ms2 R4i=EM1M3(V45“V66)

ii) for 21 x21 21/2;

1 l

R11=EM2M3(V36—V24) I R21:_EM1M3(V36_V24)

1

R41 :EV44(M12 ‘M22)

in") for 21231 =1:

l

R11=M2M3(M1V16—EM3V26>

_ 2 2 2 2 1 2 1

R21 —M3[V21+V22(M1 +M2 )+V23M3 +V16M1]+EV26M1M3 ‘E V35M3

l l

R41=M1[V4]+V42(M12+M§)+V43M%]+EV46M3(M12_M§)+V56M1M%_EV64M1

iv) for 217C; = —1:

R11=0 R212‘EV35M3 R41 Z—EV64M1 (26)
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Let M1(0), MEG), Méo), and 0L0 satisfy equations (25). Let us consider Jacobi’s matrices of C1(T0), C2(T0), and

C4(TO) in terms of M],M2, M3, and CL calculated for M]- :M‘Ep) (j=1, 2, 3), oczoco, and also of w], wg,

and um in terms of m,- with m,- = 8 = 0 (i=1, 2, 3, 4). The calculation of the second matrix does not involve

differentiation with respect to 8. Hence it is possible to set 8:0. And since M]- (j=l,2,3), (x, and

m, (i: 1, 2, 3, 4) appear in solutions in the form of related sums, the considered matrices are the same. We

denote them by J.

The solution of equations (23) comprises the following case of the existence of periodic solutions.

4 Formal Construction of Periodic Solutions in the Case that Ä] 7(21 is Irrational

If M50) : Mäo) 2 E31 = 0, E11 ab O, My» V33 i O ( M3 is an arbitrary quantity) (Elfimov, 1978), matrix J is of

the third rank and

=x’1 iv —v —v M”)2 27
0‘0 2(265 51533) ()

Equations (23) have solutions in the form of series of integral powers of 8 for m1, m2, and m4 that depend on

the arbitrary quantity M3 and vanish as e —> O (m3 is to be taken as equal to zero). Under the conditions (27),

the independent periodicity conditions are

m](COS7\.1TO —1)+m2 sin xlTo +scf”(T0)+m :0

—m1 sin xlro +m2(cosx,T0 —1)+gC§”(TO)+-~ =0 (28)

C§1>(TO)+-~=0

Using (27), the periodic solutions p2 (T,E), q2 (T,E), yz (T,8), and y’z (T,8); as 8 —> 0; take the forms

p2(T,0):0 q2(T,0) =0

72 (T,O) = My» cos22T mm) = —M§0> sin 22T (29)

with frequency k2.

Using the second integral of (2) and the initial conditions (l2), we obtain

1 _
M50):5N11[—N2i(N5+4N,N3)%] N120 (N22+4N1N3)>0 (30)

where N,- (i =1, 2, 3) are constants. Making use of (27) and (28), one gets

1 ‚ 2 2 ‚ _

ml=—ES7\,11{V31—V33M3(0) +7tlv25M§°> (2,—222)‘+M§°)(7t2-x1)‘[v35(x%

_ 2

+222xx1+22> '~(x,+xg)(v21+v23M§0> )]+[v31+(V35—V2,)M§°>+(v33

2

—v25—V23M§°))M;0) ]cos>tlro}+---

(31)

l _ 2 _

m2 =—5a21‘[v31 +(V35—V21 wg“)+(v33—v25—V23M;O))M;O) ]sm>„,TO+--.

and the calculations for m4 show that it is of the order 0(32) Making use of (3), (4), (7), (11), (20), (27), and

(31), one obtains
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research.

p =8% 11_1[C1 +N11 cos(?»2n_1t)]+8% n"1 [N12 +N13 cosOxzn'lt)

+N14cos(27t2n—1t)—N15sin(?t1rflt)—N16 cos(7„]n‘1z)]+m

q = —s% n“ N11 sinmm1 t)+e% no] [N21 sinwzn" t)— N22 sin( 2x2nr‘ t)

—N23 COS(7\,2}’Z_1I)+ N23cos((7tl —27\.2)n_1t) +N24 sinOt1 n“ t)

—N2500s(?t1n_1t)]+---

„1 i

r:r0+8N31[1—COS(Ä2n t)]+23[0]+u-

y : 8% [ C2 + N41 cos(x2n’1t)]+a% [ N42 + N43 cosmzn" z)+ N44 cos(2 ÄZn—II)

+N45cos(7t1rflt)+N46sin(7t,rf]t)]+---

(32)

y’ = —8ä N41 sinOt2 n“ I )+€% [N5] cosOtzrt—l t)+ N52 sin(7t2n_lt)

—N53 sin(2x2n“‘z)+N54 cosm1 —27„2)n*l t) +N55 sinot1 n’lt)

+N56cos(x1n“z)]+m

„ 1 _ „
y =1—§€[C22 +N§1 +2C2N41 cos(?t2n Inne? [0]+---

e l 2

a(s)=?t21(E V65—V51—v53Mgo) )+e[0]+---

where Nil/A are constants and TO = 2757:2]. The stability of the solutions will be shown in future in another

5 Geometric Interpretation of Motion

We shall investigate the expressions for the Eulerian angles in the form of power series expansions of the small

parameter a, so that we can determine the orientation of the gyrostat at any instant of time, For this case, the

‘ Eulerian angles 9, \|l and (p can be written in the following forms (Wittenburg, 1977)

 

G : cos’l y” = —py+€zy

1—“!

(pzr—WCOSG (p0 =tang1 YE) ()2E (33)

yo dt

Substituting (32) into (33), one has

where

(p0 :g—lliflli

e=e<l)+%e(1+B/¢)C2M§0)cos(t2n“1t)+---

w=w0+2erfluqcz+h(1+Bh)M§°>2]r+M§0>[(1+B/¢)C1

+C2h1n7C2‘sin(x2n“z)}+..-

(p=(p0+rOt—8M3(0)(n2b r0)—1[W1t+n7L31WZSin(7\‚2nflt)]+---

(34)
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2

e<1> =cos’1{1—]E £[C22 +(1+Bh)2M§0l ]}

Wl :(1+ßh)[1—C2(1+k)]—C‚h+2nbr0MS”l [C1C2+h(1+ßh)M;0)2] (35)

W2 =—(1+Bh)[1—C2(1+k)]+Clh+2nbr0 [hC2+(1+Bh) C1]

Formulas (34) show that the expressions of Eulerian angles depend on four arbitrary constants 0(1), wo, (p0, and

r0 . These formulas describe the orientation of the body at any instant I .

6 Numerical Discussions

In this section we investigate the numerical results by computer codes. Let us consider the following parameters

by which the motions of the body are determined

A = 17.36 kgmmz, C = 29.64kgmmz, R = 1000mm, r10 2100mm,

.9 =0.01E—02, 20 = 2mm, yzo =79.07E—03, 7’20 = 5.44E—03,

[720 =1.67E705s“1, qzo =5.23E708 s", 63 =0,350kgmm2s",

M z 300kg

Figures (2a) and (2b) represent the variation of [)2 and ([2 respectively with time, but figures (2.c) and (2.d)

represent the variation of 72 and V; respectively with time.

We note that, when .6 3 = 0, 350, the solutions are periodic. We conclude that, if [3 increases, the amplitude of

the waves and the number of oscillations also increase,
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Figure 2, The Effect of ‚63 on the Gyroscopic Motion
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7 Conclusion

The three—dimensional motion of a rigid body in the Newtonian force field with the third gyrostatic momentum,

about one of the principal axes of the ellipsoid of inertia, can be investigated by reducing the six first-order non-

linear differential equations of motion and their first three integrals into a quasilinear autonomous system with

two degrees of freedom and one first integral. The Poincaré’s small parameter method is used to investigate the

periodic solutions of our problem up to the first order approximation in terms of the small parameters, The

obtained periodic solutions are considered as a generalization of those which were obtained by Elfimov (in the

case of the uniform force field). The solutions are worked out by computer codes to get their graphical

representations. The good effect of the third gyrostatic momentum ((3) for the mentioned problem is obvious

from the graphical representation of this problem.
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