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Postbuckling of a Circular Plate - Comparing Different Solutions

H. Schoop, J. Hornig, T. Wenzel

Azisymmetric problems have been often investigated in the past. Since the problem is one-dimensional,

the boundary problem is suitable for analytical investigations and acts as a benchmark for numerical

methods. The postbuckling of an elastic circular plate under azisymmetric loading is investigated. An

analytical description is given. Solutions by means of the perturbation method and the finite element

method (axisymmetric shell element) are introduced. Numerical results are presented.

1 Introduction

The problem considered is the mechanical behaviour of a circular plate undergoing axisymmetric loading.

The plate is subjected to a uniform pressure load D in radial direction. The boundary condition of the

plate may vary between simply supported and clamped. The displacement in radial direction remains

free at the boundary. Thus the plate remains flat if the load does not exceed the buckling load; otherwise

it undergoes large deflections. The aim is to develop an analytical expression to estimate the deflection

of the midpoint under postbuckling. Only axisymmetric buckling shapes are in consideration.

2 Analytical Solution

2. 1 Kinematics

With respect to the axisymmetry the problem can be considered one-dimensional, because the deformation

of the plate depends on the radial coordinate only. Hence we go ahead with a small slice of the angle (1

shown in Figure l.
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Figure 1: Kinematics of the Plate

The base vectors shown in Figure l of the undeformed plate are named e.- and those in the deformed

configuration are denoted by Q.

X(r,z) = rer + zez
(1)

denotes the position vector before deformation. The deformation consists of displacements in radial (u)

and transversal direction (w) and a rotation around the axis ea. Thus the position vector in the deformed

configuration reads

x(r,z) = [r + u(r)] e, + w(r)ez + 23,

= [r + u(r) — z sin <p(r)] er + [w(r) + 2 cos Lp(r)]ez (2)
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This kinematic assumption shows that the deformation relies on Kirchhoff’s hypothesis. It can be de-

composed into stretch and rotation. The rotation tensor R can easily be found as

R = er®ér+ea®ea+ez®éz

cos<p O singa

= 0 1 0 ei®ej

-sin<p 0 cos<p

That means that the slope of the midsurface and the angle of the material normal vector between reference

and deformed configuration are the same. For the decomposition of the kinematics the nabla operator

is introduced, which allows to calculate the deformation gradient as the derivative of the position vector

from equation (2):

‚ 6 1 ö ö
F=V®X With V=erä+;eaä+eza—z'

Using (. . . )’ for the derivative 5"; (. . . )7 finally the desired decomposition is gained with equation (3) and

equation (4). The right stretch tensor U follows as

U = F - Rt

l ‚

LCOS‘; — zap’ 0 h O

= 0 1+ ä — 2—25“; 0 ei ® 61 (5)

0 0 1

Equation (5) neglects the deformation in thickness direction of the plate. The form of U also expresses

the fact that the deformation state is a principal one (with respect to the axisymmetry).

2.2 Strains

The axioms of objectivity and frame indifference require particular variables to be used by formulating

constitutive equations if the considered material is hyperelastic. The intention is to relate the Cauchy

strains and the Euler stresses in a constitutive law. Thus the left stretch tensor V is introduced to

calculate the stretches expressed in terms of the deformed configuration. As the eigenvalues of U and V

are the same, the result is easy to achieve: the base vectors have to be replaced. It is found

V = Una. ea. + Uaaäa eat. +Ez ® a: (6)

From equation (6) the Cauchy strains are derived as

E=V—1 (n

where 1 denotes the second order unit tensor. The strains in the mid-surface of the plate are identified

 

as the terms in z°

1 + u’ u

5M = — 1 and eaa : — (8)

cos cp r

and finally the curvatures — which are the terms in 21 - turn out as

sin (,0

 

KN. = ——<‚p’ and mm, = — T (9)

Alternatively the state of deformation can be written as

E = (em + 2 we; ea. (10)

2.3 Equilibrium of Forces and Moments

The conditions of equilibrium are given by equation (11) and equation (12)

V-(T+Q)=o (n)

V - M — Q = 0 (12)

Here T represents the membrane stress resultants of the Shell’s midsurface, Q denotes the transversal

shear force, and M equals the bending moments. These stress resultants are introduced as Eulerian.
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Equation (11) and equation (12) neglect external field loads with respect to the problem in question.

To satisfy these conditions the nabla operator V for the deformed configuration is calculated. After

calculating the metric coefficients and the contravariant compOnents of the base vectors, it is established

as

cos<p_ ö 1 ö— = _ _
13

V 1+u’er8r+r+ueaöa ( )

Calculating the derivatives according to equation (11) the balance of forces can be expressed as

cos t

Tim + Wäl’ -' tau = 0 (14)

Herein the shear force Q is substituted by the membrane force trr taking into account that the internal

transversal shear force has to vanish in every cross section. The balance of moments is written as

 

’ ta

[(T + u)m”"] — m” + t„ nip 2 0 (15)
(l+u’)(r+u) r+u coscp

The two differential equations shall now be transformed in terms of the deformation variables (p and u,

which represent the slope of the plate’s midsurface and the radial displacement. Therefore a constitutive

equation for hyperelastic materials is introduced.

2.4 Constitutive Laws

With the modulus of elasticity E and the Poisson’s ratio u, the plate stiffnesses Ks and Kp are defined

as follows (h denotes the thickness of the plate):

    

Eh Eh3
K = —‚ d K = ——„ 16
S i—ul a" P 12(1—1/2) ( )

With these definitions the equations

1 I I

trr:Ks( +u —1+u3> and taa:K3[2+I/(1+u 4)] (17)
cos (0 r r cos <p

are introduced as the internal membrane forces. The bending moments turn out as

m" = —Kp (90' + Vamp) and mM 2 -Kp (511:!) + mp') (18)

2.5 Governing Equations

To obtain a system of differential equations for the kinematic variables go and u the internal stress

resultants are now replaced by the constitutive laws introduced in equation (17) and equation (18) . For

the slope of the plate (,0 and for the radial displacement u this yields

<p” cp’ Sincp 1/ singo I

+ 1 — —
1+u’ (r+u+r(r+u) (+V)+l+u’

       

7'

Kvt 1 ’
_ifl( +u _1+„2) 2 0 (19)

Kpcoscp coscp r

and

cos 1 ’ ' l ’
9” H" +"—1+u5 —3+u +“—1 =0 (20)

1+u’ coscp cos<p 7' r cos<p

The system of equation (19) and equation (20) is a strong non-linear system of coupled differential equa-

tions. The strategy used to solve this problem is the perturbation method. To perform this technology the

trigonometric expressions in equation (19) and equation (20) are being substituted by their power series.

Only the second order terms of the power series are taken into account (third order terms respectively)

and for the sake of simplicity u = O is choosen. Then equation (19) can be written as

3 a

H ' +‘L K +9— 1 I

(p (p +90 6 +—S<p 3 +u =0
1+u’ r+u r(r+u) [(131.32—2 ”_1

- (21)

1— 2.;—
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At this level of investigation the difficulties for an enhanced development are visible. The term (1 — 92;)“l

in equation (21) can be substituted by the power series of the function (1 — x)“ in general. But as a result

of the outstanding character of the differential equation (21), the solution is stopped here due to the lack

of capable mathematics. The differential equation resembles an equation of the Bessel type. Applying

the perturbation method to a differential equation of the Bessel type, an addition theorem for products

of Bessel functions is needed. Unfortunately the product of Bessel function leads to an infinite Neumann

series as shown by Watson (1966). A simple formula similar to the replacement of sin(:c)3 by sin(3:c) for

trigonometric functions cannot be obtained.

2.6 Linearization

To figure out whether the derived equations are reasonable - althought we don’t look any further at them

due to their strong non-linear character - the linearization is checked. In case of the second order theory

equation (19) should yield the differential equation for the buckling of plates, and for the completely

uncoupled problem (linear theory) the equation of the plate under strechting should be included. In case

of linearization, equation (14) and equation (15) are transformed into

t -t
t;r+i:_r_g=0 and

m — m‚ rr act
mrr +_—

— got" z 0 (23)

To switch to the formulation in terms of deformations, the internal stress resultants are being substituted

by the constitutive laws. In the sense of the second order theory the product (p t" in equation (23) is not

small, because tn. remains finite. Thus - if equation (17) and equation (18) are incorporated - equation

(19) becomes

(p’ D 1

sa”+—T—+(E—T—2)<p=0 (24)

Herein D represents the pressure load at the boundary that equals the membrane force tr, in the linear

theory. Equation (24) is the classic differential equation for the buckling of a circular plate (Bessel type),

as discussed by Timoshenko and Woinowsky-Krieger (1959) or Nadai (1968).

In case of complete uncoupling the product (p t" is neglected and the equation of the plate under stretching

is generated:

From that point of view the linearization check is approved.

3 Solution Based on the von Kärmän Equations

The von Karman equations are

KpAAw = p; + h L(w, F) (26)

l

AAF = ~§E L(w,w) (27)

where F is the Airy stress function and w the deflection of the plate. The other parameters are used

as described in section 2.4. An external load acting in the cross direction is represented by 1);. The

operation L(<I>, \II) with (I) and ‘II as scalar value functions is defined by

L(<I>‚ \II) = Man — vv<1> - -VV\II (28)

These non-linear differential equations describe the behaviour of the plate under moderate rotations — the

coupled problem of a plate under bending and stretching. Friedrichs and Stoker (1942) now introduce

the two abbreviations

_ „1% and - adw
— rdr q——rdr (29)

and a special operation I‘ defined as

m = (12173 dir (T3 (30)

342

 



 

These new variables and the operation I‘ perform a useful transtrmation of equation (26) and equation

(27) - as far as the problem is axisymmetric. The quantity p can be interpreted as the radial membrane

stress. The value fig represents the slope of the deflected plate. The transformations in equation (29)

lead to

 

grip] = (31>
EF[q]+pq = O (32)

To find a solution firstly the load ratio A is introduced:

A 2 01:. (33)

where

1. A < 1 means the linear and uncoupled case with the homogeneous stress field trr = tau = —D. So

the plate is just stretched without any curvature.

2. A = 1 denotes the critical condition at the boundary of stabilty.

3. A > 1 is the range of large deflection where this paper focusses on - the postbuckling state.

3. 1 Perturbation Method

The proposed solution method is the perturbation method. Friedrichs and Stoker (1942) found this

method to manage the problem for ratios of A < 2.5. The functions p and q are expanded in powers of

the parameter e that is choosen with

e = A -— 1 (34)

The expansion consists of the following form:

po + 62122 + 54194 + cape + . .. (35)

q = 6'11 + 63713 + 55115 + . .. (36)

Finally this yields a system of linear differential equations for the functions pk and q; that will be solved

iteratively. The desired solution for the deflection is obtained by integrating the solution q(r) found by the

successive solution of the system of equation (35) and equation (36). It yields after intensive calculations

1 r _ _ _

w(r) — —;/0 q(T) rdr (37)

4 Description of Axisymmetric Shells with a Director Theory

Describing the geometry of axisymmetric shells, the following

v parameters are used: two surface parameters q" (A = 1, 2)

representing a reference surface, usually the shell midsurface,

and a thickness parameter 77. Vector and tensor components

refer to the base vectors er, ea, es or ez. Note that all of

those vectors are unit vectors. The surface parameters q"

are the circumferential coordinate q1 = or and the merid-

ional coordinate (arc length) q2 = 5 (see Figure 2). Treating

large rotations it is distinguished between the reference con-

figuration (undeformed state) and the present configuration

(deformed state).

   
  

 

I

reference surface
I
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Figure 2: Description of Undeformed Mid-

surface
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In the reference configuration a material point of the shell

reference Present X(q'\‚n) is characterized by the midsurface postion vector

configuration configuration R (q’\) and a normal vector of that surface D(a, s):

R(z1*)+ 77D(q*)

R(a, s) + n D(a‚ s) (38)

X(q*, n)

Here D = Drer + Dzez is the unit normal vector of the

undeformed midsurface. An analogous representation of a

material point in the present configuration x(q’\‚n) is given

by

 

X(q*.n) = r(r1A)+nd(r1A)

= r(oz, s) + 77d(a, s) (39)

The vector r(a‚s) = r(s) er + z(s) e; points to

Figure 3: Kinematics of Shell of Revolu_ the deformed midsurface. In general the director

tion d(a,s) : d‚(s) e, + dz(s) eZ is not a unit normal vector of

the midsurface (see Figure 3). This desciption of shell geom~

etry leans on Naghdi (1972) and Schoop (1987).

4.1 Strains

Describing the state of deformation, contrary to section 2.2 Green’s strain tensor EGTCC" is used. Green’s

strain tensor is obtained by EGTEC" : (F - FT - 1) with F = V o x. The nabla operator refers to the

undeformed shell geometry. It is expressed by the approximation

l a ö 8

V=—e—+e—+D— 40

R aöa sös 877 ( )

Using the nabla operator and the shell kinematics introduced above, the state of deformation is described

as follows. EG’W" splits into a part arising from deformation of the midsurface EM and into an other

part arising from the change of curvature of the midsurface mu, depending linearly on n (A and ‚u = 1, 2).

Furthermore the introduced shell kinematics is suitable for a description of the change of shell thickness

and shear deformation. The related strains 533 and 50,3 are assumed constant over the thickness. The

components of Earee" refer to the (es, ea, D)-base. Index 3 relates to the base vector D. Terms

containing 772 are neglected.

4.2 Stress and Moment Resultants

The stress resultants t”, tau, Q, and t3 are obtained by integrating the second Piola—Kirchhoff stresses

over the shell thickness of the undeformed state h. For convenience terms containing the curvatures of

the reference geometry are neglected. The same remains valid for the moment resultants mm and mss.

With respect to the axisymmetry of geometry and loading, the stress resultants mm, mawtm, tmy and

Q0 have to equal zero.

4.3 Constitutive Equations

The introduced stress and moment resultants depend on strains and changes of curvature in the following

way:

Eh

tss 2 KS (€33 "l‘ Ill-fan) mss : KP (“88 + VROG) Q8 : 1+ 1/638

taa = KS (Eaa + l/Ess) "Lag 2 KP (man + VK’SS) t3 : Eh533

The stiffnesses K5 and Kp are introduced in section 2.4. Note that Love’s approximation has been

applied. Hence we neglect coupling of mu, 5“, with t‚\‚„ m‚\„‚ respectively. The constitutive relation

regarding t3 is treated as in case of a uniform state of stress.
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5 Numerical Solution with ROSY

The finite element method is used to solve the axisymmetric problem. Therefore the element ROSY

developed for a shell of revolution is used. Starting from the principle of virtual work 6Ai —- 6A“ = O,

performing a discretization of the shell structure and applying some standard techniques, a set of equations

representing the conditions of equilibrium is established

f" — f“ = o (42)

6A“, 6Ai are the virtual work of external loads and virtual internal energy, while f“, fi are the vectors

of external and internal loads respectively. The following will focus on internal loads.

Using the constitutive equations introduced in section 4.3 and neglecting the shear strains, the virtual

internal energy reads

. E .

öA’ = / { (e,m + 1/535) 65m +0150,a + 533) 653, + (1 — 1/2) 533 6533 +

h2 ii2

+ E (Kora + 1/538) (SK/ac + E (”Rau + Kiss) 65338}

The integration has to be carried out over the area of the undeformed midsurface A. Applying the

principle of virtual work, the degrees of freedom (the components of the vectors r and d in discrete

points) have to be varied. Therefore it is necessary to describe strains and changes of curvature in terms

of these degrees of freedom.

5.1 Discretization

The axisymmetric shell structure is approximated by ring elements as shown in Figure 4. To obtain

this the meridian is divided into a number of line elements, where a is the length of a line element in

the reference configuration. The present and the reference configuration are represented by means of

the discrete degrees of freedom 1",,,zn,clm,dZn and discrete values R„,Z„‚ Dm, Dm respectively. Index

n = 1,2 is the local node number.

(a) Z meridian

A / discretized

‘ meridian   

  

node

 

m

 

I

I

I

I

I

I

I

I

I

I

  

R

er er R2 R1

Figure 4: (a) Discretized Shell Structure (b) Local Meridional Coordinate and Local Node Numbering

ä] Interpolation of Strains

Different methods are applied to express strains and changes of curvature by eight degrees of freedom

per element. Linear shape functions

12-2:- L1:1—L2:1—£ (44)
a a

will be applied occasionally. . . )’ denotes — contrary to its usage in section 2.1 - the derivative 39—8 . .)

Strains ass and 6M are expressed analytically by as, = (1" 2 + .2"2 — 1) and am = — l) .

Both, reference and present configuration are interpolated linearly between two nodes:

R=L1R1+L2R2 Z=L1Z1+L2Z2

'r = Llrl + L27‘2 z = L1z1+ L222 (45)
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Hence we get

2 2

e„=1(<r2—n> +2<z2 zu _1> (4a)
2 a

and

2

Emzl M4 (47)

2 (L1R1+L2R2)

Thickness strain 533 in a node n reads €33 n = (dmdm + dmdm — l). Linear interpolation of the

strain €33 between the nodes of an element yields

533 = L1€331 + L2533 2

l

5(L1(dr1dr1 + dzldzl) + L2 (dr‘ldr‘l + dz2dz2) - 1) (48)

ll

Change of curvature NW The shell element presented here makes use of a mean bending strain

rm rm

Kaum = (drm _ Drm (49)

The mean values Drm, drm of the vector components Dr and d, are approximated by radial components

of the vectors N and n (see Figure 5) .

  

Z- — Z 2‘ — z 1 1

Drmz; drmz 2 l Rmz—(R2+R1) rm:-(r2+r1) (50)

a a 2 2

reference configuration present configuration

/"
Dn . \/ ‘Pn ß | San

N -. deformed meridian

meridian

chord

Figure 5: Kinematics of the Deformed Meridian

Change of curvature K53 Neglecting shear strains and following the notion of DKT (discrete Kirchhoff

theory) as discussed by Bathe (1990), K” is represented by the change of slope of the deformed meridian

K33 = 35?, still being aware that the material meridional coordinate 3 refers to the undeformed state.

Assuming the nodal values ßl, H; as known, the slope in the interior of the element can be interpolated

quadratically:

6(5) 2 51L1(L1 — + ,6ng —

This is equivalent to a cubic interpolated meridian around the chord. The determination of the slope [in

at a node n will be shown next.

Because equation (45) r’ is the chord vector of the element as shown in Figure 5. Bearing in mind that

ßn + cpn is the complementary angle to that specific angle included by d" and r’, the relation

dn-r’ = (1+ E33)(1 + a”) sin (ßn + (pn)
(52)

is achieved. Neglecting £33, a” and assuming small angles (pn, ß" one can express the slope ßn in a quite

simple manner

ßn = dn "r, " (‚an
(53)
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Now the differentiation of equation (51) yields

n... = 15i (2L1 — L2) + (2L2 — L.) (54)

5.3 Element Stiffness Matrix

To assemble and to solve the system of non-linear equations (42) a numerical two point integration and

Newton’s method are applied. It is necessary to determine the global stiffness matrix

8 (fi — f“)

6a

during the iteration process. The vector of the global degrees of freedom a contains the nodal values of

the components of r and d. With the prescribed representation of kinematic quantities the formulation

of the stiffness matrix is straightforward.

K = (55)

6 Numerical Example

To test the reliability of ROSY a simply supported circular plate with the following data is considered:

 

a = 100[mm] (56)

h = 1[mm] (57)

E = 70%;] (58)

u = 0.318 (59)

The Poisson’s ratio is typical for alloys consisting of aluminium. For easy comparison the simply supported

plate was choosen. A further reference for the boundary problem of the clamped plate is discussed by

Bodner (1954) using the same method of solution like Friedrichs and Stoker (1942). The numerical

solution for the clamped plate is easily achieved by blocking the degrees of freedom for the directors at

the boundary r = a.

Relating the numerical solution to the solution of Friedrichs and Stoker (1942), the slope (p at the boundary

and the deflection w of the plate midpoint were calculated. The values are normalized according to the

reference values for the sake of comparability. The solid line in Figure 6 shows the deflection wo of the

plate midpoint over the load ratio A. The dashed line denotes the slope <,o(l at the boundary of the plate.

The values calculated analytically by the perturbation method are marked with squares and rhombs,

respectively.
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Figure 6: Perturbation Method and FEM in Comparison

wo and (‚an both remain equal zero while A does not exceed the critical thrust, because no buckling occurs

in that load range. At the critical load the non-linear part of the load/deformation-curve begins. The
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coincidence of the numerical values calculated by ROSY and the values estimated by the power series

method is quite good.

Studying the convergence 3. number of ten elements per radius was found out to perform well. The

analytical buckling load yields Dk, = A25“; where A is the eigenvalue of the equation

‚vom = (1 — „M (A) (60)

Jo(A), J1 (A) denote the Bessel functions of order zero and one, respectively. The critical load calculated

by ROSY and the analytical value differ less than 0.1% if more than five elements are used.

7 Summary

The postbuckling of an elastic circular plate under axisymmetric loading was investigated. The analytical

description by means of a third order theory did not convince due to the strong non-linear character of

the governing equations. Otherwise the pertubation method introduced by Hiedrichs and Stoker (1942)

confirms the FEM results achieved by ROSY. Hence a rare non-linear analytical solution verifies the

applicability of the ROSY-element.
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