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The Effects of Interfacial Properties on the Mechanical Behavior

of Layered Aluminum Matrix Composites

H. lsmar, F. Schroter7 F. Streicher

Al/SiC—composites are not only ajfected by inelastic deformation processes in the metallic matrix but

also by debonding occurring at the fiber—matriLK—interface. Therefore a viscoplastic material law including

damage evolution and growth, as well as a cohesive zone model for the interface, are integrated into a

finite element technique. By this the influence of interfacial characteristics on the stress—strain behavior

of a laminated Al/SiC—composite is ezramined.

1 Introduction

Composite properties are commonly extremely affected by the behavior of the interface between the

reinforcements and the matrix. Thus ceramic matrix composites (CMC) are mostly designed with a

sufficiently weak interface allowing debonding processes and therefore energy absorption by frictional

sliding during loading (Ismar and Streicher, 1999). Thus the composite deforms in a ’7pseudo—plastic”

manner connected with a considerable ductility.

On the contrary, the deformation behavior of metal matrix composites (MMC) is dominated by inelastic

deformation processes in the matrix involved in energy absorption via dislocation motion. Therefore

the opportunity of enhancing ductility by energy—absorbing processes at the interface is only used when

improving the toughness of relatively brittle metals such as Zinc (Vescera et al., 1991). Nevertheless

the interface between metallic matrix and reinforcements is usually preferred to be strong so that the

inelastic deformation of the matrix is not hindered.

For these reasons modeling of fiber reinforced MMCs has to take into account inelastic matrix defor~

mation as well as debonding processes at the interface. Especially when examining complex loadings,

such as cyclic or multiaxial loads, special attention has to be focused on the realistic reproduction of

the thermomechanical behavior of metals observable during experimental tests. Therefore a viscoplastic

material law based on Chaboche’s (1977) constitutive model is employed and extended in order to con-

sider inelastic volume changes during cyclic loading as well as ductile damage at high inelastic straining.

This material model is presented in section 2.

A multitude of models exists to predict the mechanical behavior of metals. Thus studies of the past

decade recommend a couple of models to capture the nonlinear interfacial behavior in MMCs. Very

popular interfacial models are based on the assumptions of an interface completely debonded from the

initial or a weak interface supposing an unhindered ability of transferring normal compressive stresses

and an either entire or partial non—transfer of normal tensile stresses in the interface. These models were

applied by Sherwood and Quimby (1995) and Bonora et al. (1994) who investigated the behavior of

reinforced titanium—alloys. These simple models are easily incorporated into a finite element analysis by

using contact surfaces or gap and spring elements and offer the possibility of being enhanced by including

also frictional sliding (Dragone, 1991). Zahl (1993) describes the interface in Al/Al203—composites with

a thin layer of perfectly plastic material with constant thickness thus representing a shear-able interface

able to transmit any stress level normal to the fiber Without yielding or debonding.

A more concise approach to capture the interfacial response is made feasible by the cohesive zone models

founded by Needleman (1987) and supplemented by several researchers (Tvergaard, 1990; Lissenden and

Herakovich, 1995; Chaboche ct al., 1997; Siegmund and Brocks, 1998). As far as MMCs are concerned7

the cohesive zone model was used to investigate the effect of fiber debonding in discontinuously reinforced

aluminum alloys (Tvergaard, 1990), the influence of residual stresses on Al—SiC composites (Povirk et

al., 1991)7 and the dynamic crack growth running along the interface in a bi—material with lamellar

arrangement of phases (Siegmund et al.7 1997).
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But as far as MMCs are concerned it has to be borne in mind that the interface properties such as strength

and toughness are extremely affected by the manufacturing process so that experimental investigations

establish very different interfacial characteristics. The current study investigates the general influence of

interfacial characteristics on the overall mechanical behavior rather than absolutely accurately predicting

the resulting composite properties.

By combining the material laws for the single phases with a numerical procedure, such as the finite

element method, we achieve an efficient tool for predicting how certain fundamental variables, such as

properties of phases, the fiber arrangement of phases, or the manufacturing process, affect the mechanical

behavior of MMCs. In the underlying study this is eSpecially shown for an aluminum alloy reinforced

bidirectionally with SiC-fibers.

2 Viscoplastic Material Model for the Matrix

The constitutive equations of metallic materials should take into account the most important effects of

inelastic deformation such as the increase of the yield stress with increasing deformation, rate— and time—

dependency, the Bauschinger—effect (the premature inelastic deformation after a change of the loading

direction) and the hysteresis loops under cyclic loading conditions. Therefore, an extended version of

the unified viscoplastic material model of Chaboche (1977) was used to describe the metallic matrix in

the composite. By expanding this model with the transition flow potential (TFP) a constitutive theory

is obtained which is also able to describe changing yield surface geometry and accompanying inelastic

volume changes as they were observed by lsmar and Schmitt (1990) at the beginning of the inelastic

deformation after a purely elastic loading period.

Additionally ductile damage caused by a strong inelastic deformation influences the mechanical behavior

of the metallic matrix and, therefore, has to be considered too. Damage is here introduced by Kachanov’s

(1958) concept of effective stress

 

Üiy‘ 2 (1)
1~w

where U”- are the components of the stress tensor and w is a scalar variable of damage caused by the

formation of microdefects, such as microcracks and microvoids. This scalar definition of damage implies

the similarity of the mechanical response under compression and tension. But, as Hansen and Schreyer

(1995) stated, the microdefects may partially close in compression leading to a deactivated damage

status. Therefore, an active damage variable

. (7

w=wle<1n +H(1—®(I{’))l :( 33,, £1.38 (2)

is considered here. ®(-) represents the Heaviside function, I” : a” the first invariant of the stress tensor,

and H the so—called microcrack closure parameter with 0 g H g 1.

Presuming small deformations the total strain rate tensor 8‘),- is a linear superposition of an elastic éfj,

a thermal 25%, and an inelastic component éfj, i.e.

_ -e .t ‘i
an _ Ei]. + eij + EU (3)

Considering the principle of strain equivalence (e.g. Lemaitre, 1992), stating that any strain constitutive

equation for the damaged material is derived by substituting the stress by the effective stress in the

equations of the virgin material, the law of linear thermoelasticity of the damaged material is obtained:

1 . 1 . i '
Egj + 52-J- Zm + ’U)0'i]' — UUkkÖij) + Othöij
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with the temperature T and the temperature—dependent material parameters Young’s modulus E —-—

E(T), Poisson’s ratio 11 : U(T)‚ and the coefficient of thermal expansion at : at(T

In order to couple damage constitutive equations also with the viscoplastic equations, an inelastic po—

tential is defined in the effective stress space:

Q_ K v§v(§iy‘)—7’ NH Z K >N+1 (5)

— N-l— 1 K N-l-l

where K and N are material parameters, the Macauley bracket, and 33-]- the components of the

effective active stress tensor

al
t-
2

gij Z Ö'ij — Z

which can be interpreted as the difference between the components of the effective stress tensor and

several kinematic hardening variables The effective active equivalent stress 5'1, will be discussed

below. By the condition

§.,(.§,-,-) — r : 50 g 0 (7)

the elastic domain (potential surface with Q : 0) is defined. In eq. (7) 7' is the isotropic hardening and

go the effective overstress, which is a measure for the distance between the effective stress point and the

corresponding point of the elastic domain.

Applying the kinetic equation we receive the components of the inelastic strain rate

  

,, an g, N 3g, an (8)
E : N : — N —,:—

Z‘] (98,7 K ÖSU 83,-,-

8‘2

where marks the equivalent inelastic strain rate.

Commonly the inelastic deformation of metals is described by using the v. Mises potential, which is based

on the hypothesis of inelastic incompressibility. As mentioned before, recent investigations on certain

materials have shown that inelastic volume changes occur at the beginning of the inelastic defomation.

Therefore, the viscoplastic model was improved by implementing the transition flow potential (TFP)

formulated by Mahrenholtz and lsmar (1979). Thus, we receive for the equivalent effective active stress

-; 2 "I

g, : (le) + 61; (9)
—X2+ 2

with the first invariant of effective active stress I 2 äii and the second invariant of effective active stress

deviator I; z äggjggj. ‘

The internal variable X can be interpreted as the ratio of the small (T1) to the large (7‘2) half axis of an

ellipsoid of revolution—shaped potential surface and is dependent on the inelastic strain of the respective

load cycle, see Fries et al. (1997), causing a degeneration of the yield surface to the well—known v. Mises

surface with growing inelastic strain of the respective cycle.

Moreover, the variables of kinematic and isotropic hardening have to be defined. A good representation

of the cyclic hardening behavior of metallic materials can be obtained by modifying the usual linear

kinematic hardening rule (Prager’s rule) with a saturation term. Furthermore, thermal recovery effects
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appearing at elevated temperature can be incorporated. Thus we receive

2

+2 . .- . N .- . MIC—1

z —(X3 )0k (1 — a) 8;, w rk (1 — mam, — W (x13) 33;; (10)
¥_q/___/

thermal recovery

Herein 0’“, W, 1‘”, and M k are material constants and is an equivalent value of the kinematic

hardening tensor. As the index It indicates, serval kinematic hardening terms of the same type are

superposed allowing a greater flexibility in the adaption of the kinematic hardening on the material

behavior.

The hardening model is complemented by the isotropic hardening r causing an expansion of the yield

surface. This evolves according to

T’ = B (Q - 7") (1 - 508€ - F7“ (7‘ - Q") (11)
\W—J

thermal recovery

starting from the value Mei. = 0) : R0. B, Q, Q", and 1"” are material parameters.

Finally, the growth of damage is given by (Lemaitre, 1992)

a; — fléiew — a ) (12)
— S 1,: 1; UÜ

where 51,0 is the equivalent inelastic strain below which no damage occurs, S a material parameter, and

g the damage energy release rate

 

g = ((1 + VHS“ + 1—32”(1‘;’>2) (13)

Therewith the material law is completed.

3 Interface Constitutive Model

The cohesive zone approach of Needleman (1987) with enhancements of Tvergaard (1990) and Lissenden

and Herakovich (1995) models the separation of two phases along a predefined process zone by defining

an interface potential specifying the dependence of the tractions in the interface consisting of normal

and tangential components Tn, T“, and T19; upon the corresponding discontinuity in the displacement

field across the interface:

_> Aun

Au 2 Au“ 2 I? — U—a)

Aufl

where 775 and u—a> are the displacement vectors at the interior and the exterior borders of the interface

zone as displayed in Figure 1. Needleman assumed a potential reflecting the non-linear variations in Tn

represented by a function, which evolves from the value 0 at un : O through a maximum value am”

again down to the value 0 at u" : 6„‚ which is assigned to final separation.
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Figure ].. Interface Coordinate System

In order to capture the coupling between normal and tangential debonding a dimensionless parameter

Azlczyrefer
is introduced, where the Macauley bracket specifies that under compressive loading (um g O) debond—

ing occurs only in tangential direction. The characteristic lengths 6n and (5t are material parameters

which correspond to the work of separation in connection with the maximum interface strength am”.

A : 0 marks the completely intact interface whereas for values A Z 1 no more cohesive stresses can be

supported.

  

The nonlinear relations between traction and displacement difference depend upon the maximum value

of A in the course of the precedent loading history7 Am”, in order to prevent healing of the interface

with decreasing values of A.

For Am”. < 1 the relations

I %Ulnax%n um S 0

‘ — nn _

F()\m(„„)%:k for un > 0

u

Ttl : 05F()\mam)'6it1' (16)

u A

TL‘Z : aF()\ma1)6—t2

t

can be established with a monotonically decreasing function

27 .

F(A) z Iamwu — AV (17)

Thus we have a maximum normal traction of am”, whereas the maximum tangential traction is dam”.

Under compressive normal loading (un < O) a sufficiently high stiffness of ¥amam prevents penetrating

of the fiber and the matrix phases.

After complete debonding characterized by Am” 2 l the interface is still capable of transmitting com—

pressive and tangential tractions due to contact and friction. Thus for Am” Z 1 we use
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—0' Bra for u < 04 mam n n _

for un > 0

—sgn(üt1)‚uT„ for um S O

for an > O

—sgn(ütg)‚uT„ for u” g 0

Tn :

0

Ta =

O

th =

0

to describe tangential sliding7 Where p is the friction coefficient.

for un > 0

(18)

But for x/T£1 + < n|Tn|, i.e. the resultant of the tangential tractions is less than Coulomb’s friction

limit, no sliding occurs and the interface behavior is simulated by elastic springs:

4 Tn ‘_uiét_iut1

Tu —

0

41an c

m 5, ut‘l

1t2 Z '

0

for u” g 0

for um > 0

for un S 0

f0r un > 0

with the stiffness 4ann|/6t. A change from eq. (18) to eq. (19) occurs when the resultant of im and

71,52 changes sign.

Figure 2 schematically displays the behavior defined by this cohesive model by means of two examples

under different loading conditions. Finally it should be pointed out that Chaboche et al. (1997) criticize

the physically non-acceptable non—monotonous stiffness evolution at the beginning of sliding. But nev—

ertheless the cohesive zone model accomplishes a useful aid when examining the influence of interfacial

properties in MMCs.
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Figure ‘2. Interface Constitutive Equations under Purely Normal Tensile (A) and Tangential (B)

Loading



 

4 Finite Element Formulation

In order to study a MMC laminate a three—dimensional geometric model is necessary. Thus strain cou—

pling effects between the single plies can be taken into account. Here a laminate of the antisymmetric

fiber layup [00/900] is considered. By assuming appropriate geometric idealizations, such as the equidis—

tant arrangement of circular cylindrical fibers, a unit cell is derived which contains two quarters of fibers.

The monofilament fiber has a diameter of Df : 140 ‚um. The fiber volume fraction is fixed at 32%.

The finite element mesh shown in Figure 3 consists of 780 brick continuum elements and 132 bar—

formed interface elements connecting corresponding nodes of the fiber and the matrix phases. Boundary

conditions require that all external surfaces of the unit cell remain plane and parallel to the original

configuration. The viscoplastic material model was implemented into the finite element package MARC

in form of a user~supplied material model, whereas a special interface element was developed in order to

capture the interfacial debonding (Schr‘oter, 1999).

The metallic matrix of the composite is formed by an AlMgSil—aluminum alloy, the elastic and viscoplas—

tic material parameters of which were experimentally determined at our laboratories (lsmar and Penth,

1998). Damage parameters were taken form Lemaitre (1992). As the SiC—fibers7 which deform purely

elastically, show very different elastic and thermal properties thermal residual stresses arising during

manufacture have also to be considered in the simulation.

Among the parameters defining the interfacial model, only the characteristic lengths are fixed at a

fractional amount of the fiber diameter: 6,, : (St : 0.01 v Df. All other parameters are varied in order to

analyze their efiects on the composite mechanical behavior.

      

  

  

.l

Y‘ä”

Figure 3. Finite Element Unit Cell

5 Numerical Results

Primarily we consider the laminate loaded by a displacement—controllcd monotonous tensile load parallel

to the fiber oriented in z—direction ([Oolfiber) in Figure 3. Next the interfacial properties are fixed at

am“ : 200 MPa and or = 1, where a specifies the relation between the tangential and the normal

interfacial strength.

The process of interfacial debonding is illustrated in the left part of Figure 4. Using a 20—times magnifi—

cation of displacements it can be seen that the debonding is concentrated at the pole of the transversely

loaded x—fiber ([90°]—fiber). Investigating a certain point of the interface, the extent of debonding grows

with increasing external load as well as the separation between fiber and matrix in circumferential direc-

tion. The right part of Figure 4 summarizes the normalized displacement difference Ann/6n determined
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at the pole of the [90°]—fiber, which obviously grows over—proportionally with increasing external strain

caused by the decreasing ” stiffness” of the interface.
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Figure 4. Debonding during Monotonic Tensile Loading (A) and Normalized Normal Displacement

Difference Aö—“l at the Pole of the goo—Fiber (B)‚U„„„‚ : 200 MPa7 a = l

Evidently the process of interfacial debonding influences the macroscopic stress—strain curves of the

laminate. In the left field Figure compares the mechanical behavior for various interfacial normal

strengths am“; whereby a is kept constant. Furthermore the behavior of the laminate with a perfectly

bonded interface computed by assigning am,” to a very high value is incorporated. It can be noticed

that the curve associated with am” : 400 MPa closely coincides with the curve of the perfect interface.

This is due to the inelastic matrix flow hindering the formation of higher stresses in the interface. Thus

the interface in an Al/SiC—composite can be estimated to behave like a perfect interface if its strength

exceeds 400 MPa. Furthermore it should be mentioned that the tension—compression—asymmetry of

the interfacial model induces also a tension—compression~asymmetry in the stress—strain~diagrams of the

composite (Schroter, 1999).

 

A 8 1

\
\ I

4
:
.

8

(
J
O

8 1 \
_

x
.

\
\
.

2
‘

\

\

l

(
A

8

s
t
r
e
s
s
6
[
M
P
a
]

s
t
r
e
s
s
0
[
M
P
a
]

      

200 - [.j/ /, ’ m: x, ‘

.457!" ---- -- 0 MPa x
‚4:;27’z’ ........- ‚1’

100- Jgj’z’ ............ 200 MPa ---- " 0-1 - 100

_ ‚53’ ........ „400 MPa X —1

O /’a=1 perf. int. cm=200MPa """" "1° O

0.0 0:1 0:2 0:3 014 0.5 0.0 0:1 0:2 013 0:4 0.5

strain a [%] strain a [%]

Figure 5. Tensile Stress—Strain Behavior of the Laminate depending on Umm at a : 1 (A) and on

a at 07mm : 200 MPA (B)
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The right field of Figure 5 displays the effect of varying a, the ratio of the tangential to the normal

interfacial strength, on the stress—strain behavior assuming a constant am” of 200 MPa. Starting from

identical interfacial strengths in normal and tangential directions (a = 1) a drastic increase of the

tangential strength to a 2 10 does not significantly raise the stiffness and strength of the laminate. On

the contrary, decreasing the tangential strength to a 2 0.1 a. conspicuous reduction of the composite

strength and stiffness can be noticed.

Secondly the unit cell is exposed to a cyclic mechanical load of the macroscopic strain amplitude A5 :

0.2% at an elevated temperature of 100°C. Thereby 40 cycles are examined. Figure 6 shows the inelastic

performance density dissipated by the composite per cycle for the two cases of a perfect interface and

a limited interfacial strength of am“ : 200 MPa and a : 1. It is obvious that a decreasing interfacial

strength reduces the extent of inelastic deformation in the matrix due to limited stress transfer across the

interface. Moreover, considering the lower interfacial strength, the inelastic performance density declines

more quickly in the course of the cycles. Therefore it can be assumed that a composite with limited

interfacial strength reduces the probability of matrix fatigue failure. But on the other hand strength

and stiffness of the laminate are evidently affected in a negative way.
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Figure 6. Inelastic Performance Density per Cycle in the Course of Loading for a Perfect Interface

and One with am“, : 200 MPa and a = 1

6 Concluding Remark

The current paper examines the mechanical behavior of cross—ply reinforced aluminum matrix composites

under usage of a model, which takes into account viscoplastic matrix deformation as well as interfacial

debonding. The study focuses on the influence of interfacial properties on the macroscopic response

of the laminate. Thus it hopefully offers valuable hints to material scientists how to choose interfacial

properties for achieving particular composite properties.
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