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Chaotic Attitude Motion of a Satellite on a Keplerian Elliptic

Orbit

J.H. Peng, Y.Z. Liu

In this paper, we discussed an asymmetric satellite moving on a Keplerian elliptic orbit in a gravitationalfield of

a central mass point. Formulating the Hamiltonian of the rigid body in Serret-Andoyer variables, and by an

infinitesimal contact transformation, the system is reduced to a rigid body in torque-free motion, but its moments

of inertia vary with time, we take this system as an Euler-Poinsot motion perturbed by a small periodic excita—

tion, then we can apply the Melnikov method to determine the intersection of the stable and unstable manifold of

the system’s hyperbolic point, usually this can be the cause of chaos. We also manifested the chaotic motion in

angular momentum space by the Poincare surface of section.

1 Introduction

In recent years, some fascinating results on deterministic chaos have been achieved in the field of celestial me-

chanics. According to the traditional view, the planets of the solar system move along their orbits with the regu-

larity of clockwork, the motion of the planets is strictly periodic, but recent progress (Wisdom,1987) shows

chaotic motion may be the reason for the transport of meteorites to the Earth. And the Voyager l and 2 space

missions, analytical, and numerical analysis (Wisdom,l987) also showed that Hyperion, a satellite of Saturn,

performs a chaotic tumbling motion in the sense that its angular velocity and orientation of its axis of rotation are

subject to strong and erratic changes, and it is believed this chaotic dance must have also occured in the history

of other satellites. The causes of this phenomenon is regarded as the consequence of the asymmetry of the rigid

body and the eccentricity 0f the orbit. A variety of other chaotic phenomena in satellite attitude motion is also

reported (Seisl and Steindl, 1989; Ashenberg, 1996).

In this paper, we discuss an asymmetric satellite, as Hyperion, moving on a Keplerian elliptic orbit in a gravita—

tional field of a central mass point (see Figure l). Formulating the Hamiltonian of the rigid body in Serret-

Andoyer variables, and by an infinitesimal contact transformation, the system is reduced to a rigid body in

torque-free motion, but its moments of inertia vary in time. We take this system as an Euler-Poinsot motion

perturbed by a small periodic excitation, then we can apply the Melnikov method to determine the intersection of

the stable and unstable manifold of the system’s hyperbolic point. Usually this can be the cause of chaos. We

also manifest the chaotic motion in angular momentum space by the Poincaré surface of section.
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Figure 1. An Asymmetric Satellite Moving on a Keplerian Elliptic Orbit
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2 Description of the Model

For a rigid body revolving around a mass point due to gravitational force, its orbital and rotational motion are

coupled. Considering the orbital distances are much bigger than the dimensions of the rigid body, it is usual to

neglect the gravitational coupling of the attitude to the orbit, and therefore, the orbit is a fixed elliptic orbit. The

Hamiltonian is decomposed as the sum (Arribas and Elipe, 1993).

H=HE+eHC+m (1)

where H E stands for the Hamiltonian of a rigid body in torque—free rotation, whereas H C contains the coupled

terms. The small parameter 8 is the quotient of the orbital mean motion of the center of mass by a reference

value of the rigid body’s rotational angular velocity.

The Hamiltonian is formulated in Serret-Andoyer variables (l, g‚h‚ L‚G, H ) for the attitude motion, and there are

defined two angles öandcgiven by cosö = II/G, costs 2 L/G. The principal moments of inertia of the

rigid body ([1, 12, 13) are in the relation Il S I2 S [3. The Hamiltonian of the Euler-Poinsot motion of a rigid

body in torque—free rotation in Serret-Andoyer variables is

  

- 2 2

HE : sm 1 + COS l (G2 _ L2) + _1_L2

21l 212 3

This problem is integrable. For the system under the action of gravitational force, we can construct an infinitesi—

mal contact transformation

(l‚g‚h,L,G,H) —> (1’,g’,h’, L’,G’,H’) (3)

The new Hamiltonian H ’ = H'E + EH for the system under the gravitational force can eventually be written

as (Arribas and Elipe,l993)

  

. 2 I 2 z

H’ = l[sm l + C05 1 ](G’2—L’2)+ —1—L’2 (4)
2 11* I: 21;“

It has exactly the same form as the Hamiltonian of a rigid body in torque—free motion in equation (2), the angles

g’, h’ being cyclic, their conjugate momenta G’, H’ are integrals of the motion, then the averaged first order is

reduced to one degree of freedom, and therefore it is integrable. The pseudo-moments of inertia I are

  

1 1 38 2 ,

le—l‘Fm-s—(1—3COS ö)(II-Iz)

1 _ i (5)

I: 12

1* = —1— + i(1—3coszö’)(l3—Iz)

13 I3 4G’2r3

where COS2 Ö’ = L’Z/G'2

It is worth noting that the pseudo-moments of inertia I vary in time, because they contain the radial distance r,

and time dependence of the moments of inertia is quite common when we consider attitude dynamics of deform—

able bodies, such as flexible platforms with damping or rotors, and of course the rotation of the Earth.

312



3 Euler Dynamical Equation and Melnikov Function

In the above section, we reduced the system to a rigid body in torque—free rotation, but its moments of inertia

vary in time, so we can discuss the system in angular momentum space, the dynamical equations are the standard

Euler equations

h2 = h3hl (6)

where the dot represents the derivative with respect to time. Because the angular momentum L of the motion on

the elliptic orbit is constant, we have i = L ä ‚ The elliptic radial distance is

r : all—e2?

l+ecosü

‚g

mr

where 13 is the true anomaly, e is the orbital eccentricity, and a is the length of the semi-major axis, respectively.

Substituting equation (7) into equations (6) we obtain

        

fl = ma2(1—ez) l [2—I3h h

€119 L (1+ecosÜ)2 [213 2 3

3e , 1

+W(l—3cos25)(11—12);(?)(1+ecosfi)hzh3 + 0(82)

fl Z ma2(1—ez) 1 13—11

dÜ L (1+ecos13)2 131] 3 1 (8)

3e ‚ 1

+402 1—3c0526)(I,—I3)a1_€2 (1+ecose)h3h1 + C(82)

ü : ma2(l—e2) 1 Il—Izhh

d6 L (1+ecosfi)2 III2 ‘ 2

+ 38,, l—3cos25')(12—11) 1 7 (l+ecosü)hlh2 + 0(22)
4G‘ al—e‘

Wedefine

mazll—ezl
C :

L

3 a ‚ l

= 1—3 ‘Ö I —I

C] 4G’2( COS 3 2)al—e2

3 7 , l

c = l—3cos‘5 I —I
2 4G,2( 1 QM

3 2 , 1
c = 1—3 Ö I —I3 4G,2( COS 2 l)al_ez

313



 

Expanding equations (8) into series and retaining only the first terms of eccentricity e, we obtain

      

I —I I —I

5% = c—2—3h2h. — 2ec 2 3

do [213 ' I2 3

dh I —I 1 —1

—2_ 3 1h3h1—2663 1

‘16 [311 i 31

dh I —I I —I

—3—— 1 2h,h7—Zecl 2

do III2 ’ III2

I —I I —l

Redefining Ii(i=l,2,3) to be Ii/c,and a] = 2 3,612 = 3171,03 2

2 3 31

(9) as

E

de

dhz

Ä

51/13

E?

= til/12113 — Zea1 cosühzh3 + 8cl (1+ecosü)hzh3 +

= azh3h1 — Zea2 cosühgh1 + 862(l+€COS Ü)h3h1 +

= a3};th — 26613 cosfihlhz + 8c3(l+ecosfi)h1h2 +

cos fih3hl + 862 (1 + ecosü)/13h1 + 0(8) + o(&)

cosfihzh3 +£cl(l+ecosfi)hzh3 +O(ez) + 0(82)

(9)

cos 13h] I12 + ec3(1+ ecos 6)};1 h2 + 0(82) + 0(82)

11—12

1112

 

, then we can write equations

(10)

This system can be viewed as a periodically perturbed system. Considering the unperturbed system is a torque—

free rigid body motion. 12 2 I112 + h; + I132 is an obvious constant of motion, which defines a sphere in angular

momentum space, The flow lines are given by intersecting the ellipsoids H = constant with the sphere. For dis-

tinct moments of inertia, the flow on the sphere has saddle points at (O, i 1,0) and centers at

(i 1,0, O), (0,0, i l) . The saddles are connected by four heteroclinic orbits, and they are given by

  

h1 = i iSech(—- 611613113)

"_az

h2 = ilTanh(— a1a3lfi) (11)

h3 = i a3 Sech(— (11613113)
‘Laz

where we chose II < I2 < [3. The Hamiltonian can now be written as

1 2 ‚2 l2 2 2 2 n

= — h—‘+1—2+1—3 = l h—1+h—2+h—3 + e (lg—EC” cosü—f—c2 I112

211 12 I3 2]l 12 13 ‘ 2 28‘

8 \

—e[[a1 —fl]cosfi——€—cl (12)
2 e ‘

e . . . . .

where — = 0(1), 8 and e are of first order 1nf1n1te51mal.

e

To show that the perturbed system has transverse heteroclinic orbits for e ¢ 0 and 8 i 0, we need only to

show that the Melnikov function

Mme) = Qior:HHo.H.}}da

has simple zeros.
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According to Holmes (1983), the Melnikov function can be written as

Mifio)zflii::(‘/1V11H0XVhHIMfi (14)

0

h h h

where 520:1 VhHO = _L‚_2‚_i

11 12 I3

8 8

VhHl = [H613 ——:-]cos(Ü+ÜO)+—ä—c3:lhl, 0,—|:(a1—%)COS(Ö+ÜO)-ECI:|}I3]

We obtain

M(ÖO) = [M-M}j:hlhzh3 cos(Ü+ 130 )dÜ (15)

3 1

Substituting equations (11) into equation (15), then we obtain

  

M
16

Mwo) = Chur Sech2 (— ala3 113)tan (— (11613 lfi)sin fidfi] sin 190 ( )

3 l "

where C = (a3_€C3/2)_(a1_861/2)ll 01613 i O

I3 II J a2

Integrating equation (16), we obtain

M(Ü0) = C~ n 3 cosech n sin 190 (17)

—2 alagl

MM)

which has simple zeros. Therefore the system possesses transverse heteroclinic orbits, and this implies that

Smale’s horseshoe exist, and chaotic motion may occur in this system.

4 Poincaré Surface of Section

Only few nonlinear systems possess closed—form solution, and therefore numerical techniques play a crucial role

in the process of analyzing nonlinear phenomena. Especially the Poincare surface of section has been shown to

be well suited for systems with few degrees of freedom. In what follows, equation (10) is numerically integrated

for 30 different initial conditions, the Poincare surfaces of section in the (hl,h3) and (hl,h2)plane were ob—

tained by plotting points stroboscopically with an orbital period Ü = 27T . Here we let I1 = l, I2 = 1.5 , I3 = 2,

and c1 = c3 = l . The two different types of motion, regular and chaotic, are readily distinguished on Poincare

sections, since for regular motion successive points describe smooth curves or separate points; for chaotic mo-

tion the points fill an area in an apparently random manner.

In Figure 2a/b, for fairly small eccentricity e, and small quotient 8, we see that most of the Poincare” maps are

fairly well covered by invariant tori. that is, most of the periodic and quasiperiodic motion are preserved.
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As we go on increasing e and e, some tori break into chaotic trajectories in the sense that the successive points

on Poincaré maps do not lie on a curve any more, but fill an area densely; other break into island chains along

which there is a succession of elliptic and hyperbolic quasiperiodic orbits (see Figure 2c, d). In Figure 2a, b, c,

we can also see a hyperbolic point, heteroclinic orbits, and a small region that is close to the separatrix covered

by chaotic trajectories. These features corroborate the result obtained previously in the above section by means

of the Melnikov theory.

If we increase e and esomewhat (see Figure 2d), the hyperbolic point disappears, and the topologic structure of

the system is changed. As e and e are further increased, more and more of the regular motion disappears, and

finally the points are mixed in a chaotic as shown in Figure 2e, f.
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(cl)e=0.l,€=0.l (c2)e=0.l,8=0.l

(I11, I13) Plane (h2, h3) Plane
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(fl) e:0.4,£=0.4 (f2) e:0.4,€=0.4

(h1, h3) Plane (h2, h3) Plane

Figure 2. Poincaré Surfaces of Section

5 Conclusions

After the system is reduced to a rigid body in torque—free motion and its moments of inertia vary in time, we take

this system as an Euler-Poinsot motion perturbed by a small periodic excitation. Then we calculate the Melnikov

function. It has simple zeros, this implies that Smale‘s horseshoe exists. Chaotic motion may occur in this sys-

tem, and we can see that this chaotic motion is the consequence of the asymmetry of the rigid body and the ec—

centricity of the orbit. The regular motion and the chaotic motion, as well as the transition from regular motion to

chaotic motion is manifested by the Poincare surface of section.
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