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Torsion of a Non-Homogeneous Bar with Periodic Parallelepiped

Inclusions:

Analytical Expressions for Effective Shear Modulus

l. V. Andrianov, G. A. Starushenko, S. Tokarzewski

An analytical solution, describing the effective shear modulus for composite materials with periodical cylindri-

cal inclusions ofsquare cross section, has been obtained by asymptotic methods andPadé approximantsfor any

values ofinclusions concentration and rigidity.

1 Introduction

One of the main tasks ofthe theory of composite materials is a theoretical prediction of the effective properties.

The subject we discuss in this paper has a long history (Christensen, 1979). Here we determine the effective

rigidity q of an infinite simple lattice of identical square section cylindrical inclusions immersed in a matrix.

The calculation of q for a general type of composite was originally discussed by Maxwell, who considered each

particle of the composites as an isolated dipole. The second-order approximation was due to Lord Rayleigh, who

took into account particle moments up to the octupole and calculated the effective transport coefficients from a

truncated system of linear algebraic equations.

Composite materials with square or rectangular fibers were studied by Kohanenko (1993), Bourgat (1979) and

Bakhvalov and Panasenko (1989). In Kohanenko (1993) and Bakhvalov and Panasenko (1989) net and finite

element methods were used respectively. In Bakhvalov and Panasenko (1989) the limiting case for large (close

to the maximal value) rectangular cross section cylindrical cavities was studied as an asymptotic procedure, and

simple analytical expressions for effective parameters were produced. It is worth noting that numerical methods

in some cases give satisfying solutions, but in the general case its use is not simple.

In many papers the so-called three-phase model (TPM) is used (Christensen, 1979; Kerner, 1956; Van der Pol,

1958). Due to this approach the whole periodic structure, with the exception of one cell, is replaced by a ho—

mogenized medium with unknown characteristics. From the mathematical point of View it leads to the replace—

ment of the periodicity conditions to the conditions ofjunction ofthe cell with the homogenized medium. Then

one comes to the problem of a two-phase inclusion in the infinite domain. That allows to use the method of

boundary form perturbations, replacing, as a first approximation, the contour of any inclusion by a spherical

circle one.

Neither of the above mentioned methods yields accurate results for a system with nearly touching inclusions of

high rigidity. In order to describe such a system an asymptotic formula has been derived in McPhedran et al.

(1988). However, the validity range of this formula is not known. Moreover, there still remains a certain pa-

rameter range, which is covered neither by the asymptotic formula nor by the solutions based on the assumption

ofsmall inclusions concentration.

As have been shown in Andrianov et al. (1998) and Tokarzewski et al. (1994), two-point Padé approximants

(TPPA) can be effectively used for the study of the effective properties of composite materials. This paper aims

to predict the effective shear rigidity of a two-phase composite material, consisting of an infinite simple square

array of identical cylindrical inclusions with square cross section, immersed in an isotropic matrix. In section 2

we describe the homogenization procedure. TPM is used for solving the so-called local problem for the case of

small inclusions in section 3. A description of the asymptotic procedure for the case of large inclusions is given

in section 4. In section 5 we use TPPA for obtaining analytical expressions for the effective rigidity, valid for

any values of inclusion concentration and rigidity. In section 6 we present numerical results, and in section 7 —

advantages and limitations of our method is briefly discussed in the light of the results from the previous sec-

tions.



2 Governing Relations and Homogenization Procedure

We study the effective shear rigidity q of an infinite simple square array of cylinders with square cross section

embedded in a matrix material of unit rigidity (Figure l).

 

Figure 1. The Composite Material under Consideration with Distinguished Unit Cell Di 2 Q?“ + Q}. Here a is

the characterlstic 1nclus10n Size (1nclu510ns concentration c : a ).

The governing relations may be written as follows (Muskhelishvili, 1966)
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Here U is the function of displacements in the axial direction of the rod (UJ“, U" respectively, in the matrix

(9+ )and in the inclusions ((2')); f is the density of the mass forces, f +, f_ respectively in the matrix and in

the inclusion (we deal with the general case, naturally, our results will be correct for the case f = 0 ); Ä is the

inclusions rigidity; 6/ an, is the derivative normal to the boundary ÖQ, between the phases; 6!) is the outer

boundary of the composite material. The study of such problems is important from a theoretical as well as nu-

merical point of view. Because of the complicated structure of the multiply connected domain, any kind of cal—

culation is difficult to perform. If we would treat the boundary value problem, then we would have to impose

conditions at the boundary of the inclusions, which are large in number. Therefore, the intention is to approxi—

mate the given problem by a homogenized problem on the domain without inclusions. By the method of as-

ymptotic development, a problem on a periodically inhomogeneous domain is reduced to solving problems in

the "unit cell" and in the domain without inclusions.

The theory of homogenization has been developed by many authors (Bourgat, 1979; Bakhvalov and Panasenko,

1989), we refer to these publications for bibliographical references. The main problem in this field is the solving

of the so-called local (or cell) problem. This problem has usually been treated by numerical methods. In this

paper we succeed in solving the local problem by means of some approximate analytical procedures. Let us

consider a unit cell of the studied periodical structure with typical size 28 (8 << 1, Fig. l) and denote

C=— n=— (3)
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Here Q and n are the „fast“ variables (Bourgat, 1979; Bakhvalov and Panasenko, 1989). For slow variables we

use the following notation: x = x1; y = y].

The operators 6/ 6x1 and 6/ 6y] applied to the functions U+,U _ become

6 6 l 6 6 6 1 6 6 6 1 6
—=—+———- —-=—+—— —=——+—— (4)

6x1 6x 8 6Q 6y1 6y 8 6n 6n1 6n 8 6k
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where — = —cosoc + —cosß — = —cos0t + ——cos[3

6n 6x 6y 6k 6Q 6r]

oc‚ß are the angels between the normal vector n to the boundary 69,- and the co-ordinate axes. Let us repre-

sent the solution in the form of a formal expansion

U = U0(x,y)+ aU‚(x,y,g‚n)+ 32U2 (x, y, q, n)+... (5)

where

U,(x,y,§+2,n+2):Ui(x,y,C,n) i=l,2,3... (6)

In accordance with multiscale method (Bakhvalov and Panasenko, 1989) we consider formally functions of two

variables U‚(x‚ y) as functions of four variables U,(x,y,§(x,y),n(x,y)), i = 1,2...

Substituting series (5) into the boundary value problem (1), (2), taking into account relations (4) and splitting it

with respect to the powers of e , one obtains the recurrent system of boundary value problems
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The equations (7) with the corresponding boundary conditions (8) represent the local boundary value problem.

For solving it in the case of small inclusions (inclusions typical size a tends to zero) we use TPM, and in the case

of large inclusions (a tends to the unity) we use a singular perturbation approach.



3 Solution of the Local Problem for Small Inclusions

For solving the local problem in the case of small inclusions (a —> 0)we use TPM (Christensen, (1979); Kemer,

(1956); Van der Pol, (1958). We replace all periodic structures with the exception of one cell by a homogenized

medium Ö with unknown rigidity X = q . That leads to the problem of a two-phase inclusion in an infinite do—

main (Figure 2)

         

Figure 2. Three-phase Model as Applied to the Composite Material under Consideration in Case of Small Inclu-

sions (a —> 0 ).

Using the method of boundary form perturbations, in the first approximation we replace square contours by

circle ones, and we introduce polar coordinates for the cell problem (§,n—>r,9). Then the functions

Ui (x, y,Q,n) transform into U‚-(x, y, r,6)‚ i = 1,2,... . So in polar coordinates the local boundary value problem

can be written as follows:
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Solution ofequations (11) and (12) can be written in the form:

Ul‘ = Alrcose + AzrsinG

Uf =(Blr +C1 /r)cose +(132r+c2 /r)sin6 (13)

Ü1 =1), /rcosO+D2/rsin9

where
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For determination of the effective rigidity X of the homogenized medium we substitute the derived expressions

(13) into the boundary value problem (9)

HL1(U0‚U1+‚U;)den+„LI(UO‚U1’,U;)den=O in Q

a: 0:

Then the unknown parameter 7: may be obtained from the linear algebraic equation as follows:

N 2) _ 2
q=Ä:Äl+a +1 a (14)

7t(1—a) +1+a2

Expression (13) has been obtained under the assumption of small inclusions. However, it qualitatively represents

the behaviour ofthe effective rigidity in the case of large inclusions too.

4 Solution of the Cell Problem for Large Inclusions

When inclusions are large (a —> l) , one can not use the approach of TPM, but smallness of the parameter

thickness of the wall between two neighbouring inclusions may be taking into account. Then we could construct

an asymptotic solution using a singular perturbation technique.
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Figure 3. Model of the Composite Material under Consideration in the Case of Large Inclusions ( a —> 1 ).

Due to symmetry we can consider each strip (see Figure 3) separately and obtain solution only for that one. For

instance for (27 it can easily be shown that

  

(15)

and the local boundary value problem can be written in the following form:
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The condition of periodic continuity is:

u; =0 (19)
n=a/a

 

Solution of the boundary value problem (16) to (19) is represented as follows:

 

U1+ 2 E1 + Fill (20)

Ul— : Gill

where

El =(1—AT2)6U° Fl=—(1—AT2)% G1 = {143% T2 = (a+7t(1—a))‘1

After substituting the derived expressions (20) into the boundary value problem (9) and doing homogenisation

(see above) we obtain:

7t(1—a2 +a3)+a2(l—a)

q : Ä(1—a)+a
(21)

Formula (21) has been obtained under assumption of large inclusions. However, it qualitatively represents the

behaviour of the effective rigidity in the case of small inclusions too.

5 Evaluating of a Two—point Padé Approximant

The notion of TPPA is defined by Baker and Graves—Morris (1995). Let be

@(v) 5 Zeh-v" when v —> 0 (22)

i—O

(p(v) E 21m2" when v ——> oo (23)

i:0

Then TPPA are represented by the function

(24)

in which the k1 and k2 (k1 +k2 =m + n+1)coefficients of expansions in the Taylor series when v a 0 and

Laurent series for v a oo coincide with the corresponding coefficients of the series (22) and (23) respectively.
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Here TPPA allows us to obtain an approximate analytical expression of q, valid for all values of inclusion con-

centrations c e [0; 1]( z a2)and rigidities Ä e[0;oo) . For a —> 0 we use three first coefficients (k1 = 3) of an

expansion of the formula (14) in terms of a/ (1 —a), and for a —-> 00 we use two first (k2 z 2) coefficients of

an expansion of the formula (21) in terms of (1 — a) / a. The derived two-point Padé approximant (for m = n = 2)

IS:

A+l+c(7t—1)

x+1—c(x—1) (25)

The obtained approximate analytical solution (25) is in good agreement with known numerical data (see

section 6). Let us point out that the analytical result of our method (25) coincides with the solution for small

inclusions (a —> 0)with expression (14), obtained by means of TPM. This fact shows that TPM allows to achieve

a very accurate approximation of q in the case under consideration. However, it would not be so in other prob-

lems, which involve calculating different effective coefficients or different geometry ofcomposite materials.

6 Numerical Results

The dependence of the effective rigidity q on the inclusions concentration c and rigidity Ä , accordingly to the

obtained analytical solution (25), is shown in Figure 4.
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Figure 4. Effective Rigidity q as a Function of Inclusions Concentration c = a2 and Rigidity 2t , Accordingy to

the Analytical Solution (25)

In Figure 5 formula (25) is compared with Bourgat’s numerical results for c = 1/9 (Bourgat, 1979).
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Figure 5. The Analytical Solution (25) (Solid Curve) is Compared with Bourgat's Numerical

Results for c = 1/9 (Bourgat, 1979), (Black Points).
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7 Concluding Remarks

In this paper we have developed an approximate analytical representation of the effective rigidity q for a peri-

odic array of cylindrical inclusions with square cross section, immersed in a matrix material. Homogenization

procedure, three-phase model and some asymptotic approximations have allowed us to obtain solutions for small

and large inclusions separately. Two-point Padé approximants have been used to derive the uniform analytical

expression of q, valid for all values of inclusions concentration and rigidity. The obtained results are in good

agreement with known numerical data.

Our method may be effectively used for calculating other effective coefficients of composite materials with

periodic structures. On the other hand, one ofthe important problems of our procedure is to control the accuracy

of the realised approximation. In some cases numerical methods or experimental results can be used for that

purpose.
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