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Error-Controlled Runge-Kutta Time Integration

of a Viscoplastic Hybrid Two-Phase Model

S. Diebels, P. Ellsiepen, W. Ehlers

A hybrid two-phase model consisting of a materially incompressible solid skeleton saturated by a compressi-

ble pore-fluid is presented. The material behaviour of the solid phase is assumed to be elastic-uiscoplastic,

with the viscoplastic part being modelled by a single surface yield condition and a non-associatedflow rule.

The numerical solution of initial-boundary value problems is based on the finite element method for spatial

discretisation, while the time integration of the resulting semi-discrete system of difierential—algebraic

equations is performed by an embedded error—controlled Runge-Kutta scheme. It is found that, especially

in the presence of localisation phenomena, error control is essential to obtain the correct solutions.

1 Introduction

The mechanical behaviour of multi—phase materials is of interest in several branches of engineering,

e. g. in geomechanics, soil mechanics, powder metallurgy, and biomechanics. The theoretical access to

these fields is by the theory of porous media (TPM), a macroscopic theory of superimposed continua

which is based on the theory of mixtures and combined with the concept of volume fractions. In this

theory, the properties of the constituents (phases) are averaged over a representative elementary volume

(REV) occupied by the whole mixture. Therefore, in the resulting homogenised or “smeared” model,

material points of each constituent exist at each geometrical point. The volume fractions are introduced

as scalar structural variables which describe the local composition of the mixture. This approach has

been discussed in detail by Bowen (1980, 1982), de Boer and Ehlers (1986), Ehlers (1993, 1996), and

others. Applications of the TPM in terms of numerical computations based on two—phase models usually

deal with a microscopically incompressible solid skeleton which is saturated by an incompressible viscous

pore—fluid. Therein, the material behaviour of the skeleton ranges from elastic (Prévost, 1982; Diebels

and Ehlers, 1996), elastic—plastic (Ehlers, Diebels, Ellsiepen and Volk, 1997; Ehlers and Volk, 1998) to

elastic-viscoplastic (Diebels, Ellsiepen and Ehlers, 1996).

This paper deals with a so-called hybrid model (Ehlers, 1993), i. e. a microscopically incompressible solid

skeleton saturated by a compressible pore—fluid. Such a model is able to describe the behaviour of porous

media such as dry soils, metallic or polymeric foams and other porous materials which are saturated by

a gas. The following section gives a brief outline of the kinematic relations governing the hybrid two—

phase model. Section 3 discusses the balance equations, whereas section 4 is assigned to the constitutive

equations modelling an elastic-viscoplastic skeleton and a viscous compressible pore-fluid, restricted to the

geometrically linear theory. In section 5, the spatial discretisation of the governing equations by the finite

element method (FEM) leads to a system of differential—algebraic equations (DAE) in time. Numerical

integration of this system is performed by a Runge—Kutta method with embedded error estimator and

step size adaption. For details concerning differential—algebraic equations, see e. g. Brenan, Campbell and

Petzold (1989), Hairer, Lubich and Roche (1989), Hairer and Wanner (1991).

2 Kinematics

The theory of porous media is based on the assumption of superimposed continua, that is, within a

macroscopic theory, the constituents are averaged over the REV and, therefore, each spatial point is

occupied by material points of all constituents. Quantities belonging to a constituent (phase) (pa are

characterised by an index a. The local structure of the mixture is represented by scalar variables, the



volume fractions n”, describing the local ratio of the volume occupied by a phase «pa (volume element

do“) and the bulk volume occupied by the whole mixture (,0 (volume element du):

d1)“a z
171 du ( l

In a two-phase mixture (at E {5, consisting of a solid skeleton (p5 and a pore—fluid 90F , the saturation

constraint reads n5 + up : 1. Starting from different reference positions Xa, each constituent follows

its own motion

X = Xa(Xa‚ t) (2)

which leads to the velocities x; = 6Xa(Xa, t)/öt and accelerations xi; : 82X0(Xa, 0/8152. The de—

formation gradient is computed from equation (2) by Fa = Öxa (XOH t)/8Xa :: Grada x. Using a

Lagrangean description of the solid phase cps , the primary variable is the displacement vector us, leading

to the velocity vs:

us : x — XS V5 : X’S = (uS)'S (3)

In contrast to the usual Eulerian description, the fluid phase is described relative to the deforming skeleton

by the so-called seepage velocity, i. e. the difference velocity between the solid and the fluid motion:

WF Z XF “ X’s (4)

Restricting the presentation to the geometrically linear case, the spatial derivatives grad(-) : /8x

and Grada(-) : /(9Xa are approximately equivalent. Therefore, the linear strain tensor reads

1

es = 5(gradus + gradT us) (5)

where the transposition of a second—order tensor is indicated by (-)T, and gradT(-) : (grad(-))T.

3 Balance Equations

The balance equations can be derived based on the framework of a master balance discussed in detail by

Ehlers (1996). With the partial density p”t : napO‘R‚ the effective density pO‘R, and the material time

derivative (pa); = öpa/öt + grad pCY . x’a following the motion of (pa, the balance of mass for (pa reads

(pa); + p” divx'a z O, (6)

The operator div(~) is the divergence corresponding to grad(-). For a microscopically incompressible solid

skeleton, the effective density pSR is constant, while the partial density p5 may vary due to changes in

the volume fraction 715. The solid balance of mass reduces to a volume balance which can be integrated

from an initial—value n55 leading to

n5 : ROSS det Fgl z nögs(1 — divus)‚
(7)

where the second identity is valid in the framework of the geometrically linear theory. The volume fraction

nF : 1 — n5 of the fluid is obtained from the saturation constraint. Splitting the fluid density into the

volume fraction HF and its effective part pFR, substituting the fluid velocity X’F = Xg +WF from equation

(4), and applying the identity : + [grad(-)] -wF to and (pFR)’F in order to formulate the

model with the time derivative only, the fluid balance of mass (6) becomes

nF (pFR)IS + pFR div (us); + diV(anFRWF) = 0 (8)
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Neglecting acceleration terms, the balance of (linear) momentum for each constituent (‚00‘ reads

0 : divTa + pab“ + f)“
(9)

with the partial Cauchy stress tensors Ta, body forces b“, and the momentum exchange ISS : —f)F

(interaction force). As discussed by Diebels and Ehlers (1996), it is useful to deal with the mixture

balance of momentum instead of the solid’s balance. The sum of both momentum balances is given by

0 = div(TS + TF) + (p5 + pF)g (10)

where the body forces b“ are identified with the gravity g.

4 Constitutive Equations

From general thermodynamical considerations (Ehlers, 1993), the stress tensors TO‘ and the interaction

term pF have the following structure:

T5 = —nSpI + Tg

TF z —anI + T5 (11)

AF

2 pgraan + pg

In case of the hybrid model under consideration, both the extra quantities, index E, and the effective

pressure p are determined by constitutive equations as functions of the process variables. Otherwise,

i. e. when the pore—fluid is incompressible, the pressure p results from a constraint and depends on the

boundary conditions of the problem. Here, the compressible fluid phase (‚0F is considered to be a pore—gas,

and the pressure is determined by an equation of state (ideal gas equation):

p = RGPFR (12)

Both the general gas constant R and Kelvin’s temperature (9 are assumed to be constant. As usual in

hydraulics, the extra fluid stresses are neglected. Fluid friction is modelled by the extra term of the

interaction force only:

PE Z ——kF—WF (13)

The Darcy permeability kF is a macroscopic quantity containing information on the pore size and struc—

ture and on the fluid viscosity. In combination with the quasi—static momentum balance of the fluid,

this representation of the interaction term leads to the well known Darcy law. The extra stresses of the

solid skeleton are determined by an elastic—viscoplastic material law. Therefore, in the framework of a

geometrically linear theory, the strain tensor es is additively decomposed into its elastic and plastic parts

Es = Ese + Esp (14)

The linear extra stress tensor 0% fix T153 depends on the elastic part of the strain only,

01% : Zug 653 + /\S trage I (15)

where p5 and A5 are the Lamé constants of the Hooke—type elasticity law. Note that A5 represents a

structural compressibility since the skeleton material is microscopically incompressible. Following the

basic ideas of Perzyna (1966), the plastic strain is the result of a flow rule

‚ 60 A z
(16)(Espls z Aa—„g n 00
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where the plastic multiplier A is determined by a yield criterion F and the flow direction is derived from

a viscoplastic potential G. The viscous parameters are the relaxation time n, the stress normalisation

00 and the exponent r. The Föppel symbol (Macauley brackets) is defined by : (a: + 2. The

present formulation is based on the single surface yield criterion proposed by Ehlers (1995),

 

F(I, 11D, mD) = (/1100 + yup/HngW + %a12 + 5214 + ,6I + 512 — n
_

17)_
< 0 elastic

(Wlth F(17 HD7 HID) { 2 0 viscoplastic

In addition, the viscoplastic potential proposed by Diebels, Ellsiepen and Ehlers (1996),

G(I‚ 11D) 2 ML; +5041? + 614 + ßI + 512 + g(I) (18)

is applied. The yield criterion F and the viscoplastic potential G depend on the first invariant I of

the extra stress tensor 0% and the second and third invariants IID and IIID of the extra stress deviator

UgD. The material parameters a, ß, 7, 6, 5, a, m, 77, 00, and r have to be determined from (triaxial)

experiments, the function g(I) allows to adjust the course of the dilatation angle up.

5 Numerical Solution

The numerical solution of initial—boundary value problems with the presented hybrid model requires that

the governing equations be discretised both in the spatial and in the time domain.

Spatial Discretisation. The spatial discretisation with the finite element method is based on a weak

formulation of the governing equations (mixture balance of momentum equation (10) and fluid balance of

mass equation (8) together with the ideal gas equation (12) and the Darcy law). The primary variables

are us and p. In case of the incompressible two-phase model, this procedure is given in detail by Diebels

and Ehlers (1996). Multiplying the equations by test functions 6us and 6p and integrating by parts

results in the weak formulation of the hybrid two—phase model:

/grad6uS-(cr§7—p1)dv : /5u5'(pS+pF)gdv + /6u5otda

Q Q rt

1 F I - / 1 [CF (19)

E6 6p [n p5 +p d1v(u3)s] du + E graddp- ? gradp du :

Q Q

1 kF p '

: ——— d5 - —— — d — (5 ‘ d
R6 gra p g Re 3 v / Pq a

Q
Fq

Therein, g : |g| is the acceleration due to gravity, t = (0% — pI)n is the force vector acting on

the Neumann boundary R of the mixture and (j = anFR WF - n is the (outward) fluid mass fiux

a Displacement

Displacement and Pressure

>< Plastic Strain

 

Figure 1. Discretisation with Triangles or Quadrilaterals

through the Neumann boundary I‘q. As usual, the test functions vanish on Dirichlet boundaries with

prescribed displacement or pressure. Within the finite element discretisation, the evolution equation (16)
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for the plastic strain esp (internal variable) is computed only at the integration points of the numerical

quadrature in the sense of a collocation method. For the displacement us, quadratic shape functions are

used, while the pressure p is approximated by linear shape functions. In the case of triangles, this type

of approximation is known as the Taylor-Hood element, cf. Figure 1. The set of equations resulting from

the FEM semi-discretisation is still continuous in the time variable.

Time Integration. For a mesh with N, nodes and Na integration points, the FEM degrees of freedom

are collected in a vector u and the internal variables in a vector q:

u = ((uls‚p1)‚---‚(ujsv”‚pN"))T

N)T
1 <20)

(ESP,...,€S;a

I

With the abbreviation = and the vector of unknowns y 2: (uT, qT)T, the semi-discrete initial—

value problem in time with t Z t0 can be formulated as follows (Ehiers and Ellsiepen, 1996, 1997):

F1(t>u7ulaq)

l I é 0 yUo) = 110 (21)

F2(t>q)q7u) q _g(qau)

F(t‚ y, y’) E

The first equation F1 represents the field equations with a generalised mass matrix M, a generalised

stiffness vector k, and generalised external forces f (FEM degrees of freedom, global). The second equa—

tion F2 represents the evolution equations of the plasticity model which are evaluated at the integration

points of the finite elements (internal variables, local). Due to the fact that the acceleration terms in the

mixture balance of momentum have been neglected (quasi—static model), the matrix M does not possess

the full rank. This makes equation (21) a system of differential-algebraic equations (DAE) which can be

shown to be of differential index one. Suitable time integration methods for index one DAEs have to

fulfil certain stability properties. To name only a few, A-stability is a must as a DAE can be thought

of as an infinitely stiff system of ODEs. Furthermore, L—stability is a desirable property for equations

that include some physical damping like the presented hybrid two-phase model. In the last twenty years,

many other stability concepts have been developed, cf. e. g. Hairer and Wanner (1991).

In what follows, only one—step methods are considered as they provide a suitable means to integrate FEM

systems including internal variables (plasticity) at moderate storage and computational costs. Implicit

Runge—Kutta methods (IRK) constitute the most prominent class of one-step methods, allowing for flexi—

ble construction of methods with various properties, e. g. stability, high order, reusability of linearisation

matrices, and embedded error estimations. For details on the convergence of IRK methods applied to

DAEs, see Hairer, Lubich and Roche (1989), Brenan, Campbell and Petzold (1989). For large systems

 

Figure 2. Butcher Array for DIRK Methods

as arise in FEM computations, diagonally implicit Runge-Kutta methods (DIRK) are advantageous as

they allow the stage solutions to be calculated one after the other, thus reducing the number of un—

knowns in a single non—linear system solve. For systems with only mild non—linearities, singly diagonally

implicit Runge-Kutta methods (SDIRK) additionally allow a once computed and factorised matrix to

be reused which, in some cases (Ehlers and Ellsiepen, 1996), can drastically reduce the overall solution

time. The coefficients of a general s~stage DIRK method are summarised in the Butcher array shown

in Figure 2. The c,- are the quadrature points (stage positions), and the aij and bi are the internal and

23



external weights, respectively. The additional external weights Ei provide an embedded method of order

13 < p, where p is the order of the native method. Stifi'ly accurate methods, i. e. as,- = b,, are preferred

when integrating DAEs as this property guarantees that the algebraic constraints are fulfilled at the

new time step. Moreover, consistent initial values are a neccesary assumption, that is, the equation

F(t0, yo, ya) = 0 must have a solution 316. With a given time step hn at time tn, stage derivatives

Y], stage solutions Y,- : yn + hn 23:1 aij Yj', stage increments z, : Y, — yn, and accumulated stage

derivatives 3,- : hn a” Yj’, the main computational efiort of the DIRK method is in the solution of

the following 3 non—linear systems for the stage increments zi:

F(t„+cih„‚ yn+zi‚ fiflzi—siD :0 i:1...5 (22)

During the solution of the non—linear systems, the quantities Y,’ have to be stored. Then, the two

solutions of order p and 13, respectively, at time tn+1 = tn + hn may be calculated:

2/.“ z yn+han.-Y/ am = yn+hnZt~Yx <23)

j:1 j:1

Clearly, for stifiiy accurate methods, the new solution coincides with the solution of the last stage,

yn+1 : Ys : yn + z5‚ and is not recalculated. An embedded error estimation is given by the difference

of the two solutions of orders p and 13 < p, respectively:

ERR z llyn+1 —@n+1|l = IlhnZÜi-ÖÜYXII (24)

jzl

Note that this error estimation is “cheap” in the sense that it does not require an additional non-linear

system solution but only a weighted sum of the already computed quantities Yi'. This makes Runge—Kutta

methods with embedded error estimators well suited for large systems of equations.

In the case of the hybrid two-phase model, the non-linear systems (22) read

  

T§(z%’zi) mi“, (Z? 4?) +9<qn+z%‚ un+z%) 0

where 2% and z? are the stage increments for the FEM nodal variables u and the internal variables q,

respectively. The special structure of equation (25) is exploited during the solution process, that is, the

non—linear systems are solved by a generalised Block-Gauss—Seidel-Newton iteration. In this context, the

evolution equations of the plasticity model are solved by a local Newton iteration with fixed increments

z,1 of the global variables, i.e. r§(zf;z}) : 0, resulting in local increments depending on the

fixed global increments. This corresponds to a local evaluation of the constitutive equations in each

finite element. The second step of the procedure is the solution of the global sparse linear FEM system

J,- Az,1 : r11, taking into account the local algorithm during the linearisation to yield a global Jacobian

matrix

 

dr%(2%,z%(z%)) an? an! dz;

J” Z F Z özl + 5723:1 (26)

Therein, the first term on the right hand side is the generalised stiffness matrix from the elastic material

law (and the linearisation of the Darcy law), while the second term results from the linearisation of the

discrete plastic evolution equations. In the literature, this procedure is known as the “algorithmicly

consistent linearisation”. In case of the implicit Euler integration scheme — which is in fact a special
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one—stage SDIRK scheme with all coefficients equal to one s the well known elastic-predictor ~ plastic—

corrector scheme is obtained, cf. e. g. Hartmann, Lührs and Haupt (1997). After the solution of the

linear FEM system, the stage increments of the global FEM variables are updated according to Newton's

method, 2,1 z: zl1 — Azf, and the Whole procedure is repeated until a suitable convergence criterion is

met, e.g. < TOLT and/or < TOLZ.

Due to the different nature of the quantities u (FEM degrees of freedom in the L2 sense) and q (collocation

variables), the error estimation equation (24) is used to define two tolerance weighted error measures e“,

and eq in a weighted 2-norm and maximum norm, respectively (Ehlers and Ellsiepen, 1997). A time step

is accepted if both error measures are less or equal to one, and rejected otherwise. In both cases a new

step size is predicted from the error measures and the order 13 of the embedded method:

I

W
hnew z: hn ' p

max{eu‚ eq}

6 Example

A simulation of a biaxial compression test is used as an example. From biaxial experiments it is known

that, when a critical load is reached, the plastic strain localises in narrow bands (shear bands). In general,

the location and orientation of shear bands are not known. To overcome this difficulty in the numerical

simulation, the stiffness of one element is reduced to initiate shear banding as indicated in Figure 3. The

lower boundary of the specimen is fixed while at the upper boundary the displacement 112 is given as a

function of time. The horizontal stress t1 is applied and then kept constant.

I» t

t1 t1

  

1

P
L

112

     

H
-

_§\&éé

Imperfection

   

Figure 3. Mesh and Boundary Conditions for the Biaxial Test

Figure 4 shows the results obtained by the implicit Euler scheme (left) and by SDIRK 3(2) (Cash, 1979)

of third order with embedded error estimator of second order (right). The step size of the implicit Euler

scheme is controlled by the number of Newton iterations, i. e. by the non—linearity of the problem, while

in the Runge—Kutta scheme, the embedded error estimator is used for automatic step size control. Due to

the imperfection on the lower boundary the shear band should start at the weakened element. Therefore,

the Runge—Kutta scheme predicts a physically meaningful result while the solution of the implicit Euler

scheme is unphysical. The reason is that the non—linearity—control used with the implicit Euler scheme

does not recognise when plastic yielding starts. Therefore, the time of first yielding is not predicted

correctly and, as a consequence, the shear band starts from a wrong position. In contrast, the error

controlled Runge-Kutta scheme automatically reduces the step size when the first plastic yielding occurs,

and again increases the step size once the shear band is established. The solution depicted in the right

figure may also be achieved using the implicit Euler scheme when the maximum step size is kept small

enough. However, the computational cost is then much higher than that of the error—controlled SDIRK

3(2) ~ in the present case about a factor of four.
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Euler/Newton: Equivalent plastic strains
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SDlRK 3(2): Equivalent plastic strains
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Figure 4. Equivalent Plastic Strains. Left: Implicit Euler, right: SDIRK 3(2)

In general, the correct solution as well as the required step sizes are not known in advance. Therefore,

error-controlled schemes, e.g. the SDIRK 3(2) applied here, are neccessary for reliable and efficient

numerical time integration of complex initial boundary-value problems that arise in technical applications.
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