About a Torsional Problem for the Orthotropic Non-Homogeneous Rod of Rectangular Cross-Section

A. M. Eishinskii, V. J. Adlucky, E. Ts. Tsadikova

The paper deals with an analytical solution of the torsional problem for the orthotropic non-homogeneous rod of rectangular cross-section with two shear moduli which are functions of the cross-sectional height coordinate. Computational results are presented for the torsional rigidity, maximum shear stresses and their locations for various values of the problem parameters.

The solution of a torsional problem for the orthotropic non-homogeneous rod of rectangular cross section (Figure 1) with variable shear moduli under the action of a torsional moment M is considered. It is supposed that the planes of elastic symmetry are parallel to the sides of the rod, and two shear moduli G_{1} and G_{2} are given in the following form

$$
\begin{equation*}
G_{1}(y)=\beta^{-2} G_{2}(y) \quad G_{2}(y)=g\left(e^{-\alpha y}+C e^{\alpha y}\right)^{-2} \tag{1}
\end{equation*}
$$

where β, g, α, C are constants. Giving various values to the parameter C it is possible to simulate both hardening and unhardening of various zones of the rod material. When $|C|>e^{2 \alpha b}$ and $|C|<e^{-2 \alpha b}$ the monotonic variation of moduli takes place.

Figure 1. Non-Homogeneous Rod of Rectangular Cross-Section
Hereafter for definiteness we assume that $\alpha=1 / b$. It should be noted that the case $C=1$ was considered by Eishinskii et al. (1973).
Plots of the value $G_{2}(y)$ depending on C are presented in Figure 2.

Figure 2. Plots of the Value $G_{2}(y)$ Depending on C

The equation for the stresses function $\psi(x, y)$ has the form (see Lechnicky, 1972)

$$
\begin{equation*}
\frac{\partial}{\partial x}\left[\frac{1}{G_{1}(y)} \frac{\partial \psi}{\partial x}\right]+\frac{\partial}{\partial y}\left[\frac{1}{G_{2}(y)} \frac{\partial \psi}{\partial y}\right]=-2 \tag{2}
\end{equation*}
$$

Solving equation (2), in view of relations (1), by the method of expansion in Fourier series, we obtain

$$
\begin{equation*}
\psi(x, y)=\sum_{k=1,3,5, \ldots}^{\infty} \sin \frac{k \pi x}{a} Y_{k}(y) \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \left.Y_{k}(y)=\frac{4 g b^{2}}{\pi k s_{k}\left(e^{-\frac{y}{b}}+C e^{\frac{y}{b}}\right.}\right)\left\{\frac { e ^ { - s _ { k } \frac { y } { b } } } { e ^ { - s _ { k } } - e ^ { s _ { k } } } \left[\int_{0}^{0,5} \frac{e^{-s_{k} t} d t}{e^{-t}+C e^{t}}-e^{-s_{k}} \int_{0}^{0,5} \frac{e^{s_{k} t} d t}{e^{-t}+C e^{t}}-\int_{0}^{-0,5} \frac{e^{-s_{k} t} d t}{e^{-t}+C e^{t}}+\right.\right. \\
& \left.+e^{s_{k}} \int_{0}^{-0,5} \frac{e^{s_{k} t} d t}{e^{-t}+C e^{t}}\right]+\frac{e^{s_{k} \frac{y}{b}}}{e^{-s_{k}}-e^{s_{k}}}\left[e^{-s_{k}} \int_{0}^{-0,5} \frac{e^{-s_{k} t} d t}{e^{-t}+C e^{t}}-\int_{0}^{-0,5} \frac{e^{s_{k} t} d t}{e^{-t}+C e^{t}}-\right. \\
& \left.\left.-e^{s_{k}} \int_{0}^{0,5} \frac{e^{-s_{k} t} d t}{e^{-t}+C e^{t}}+\int_{0}^{0,5} \frac{e^{s_{k} t} d t}{e^{-t}+C e^{t}}\right]+e^{-s_{k} \frac{y}{b}} \int_{0}^{\frac{y}{b}} \frac{e^{s_{k} t} d t}{e^{-t}+C e^{t}}-e^{s_{k} \frac{y}{b}} \int_{0}^{\frac{y}{b}} \frac{e^{-s_{k} t} d t}{e^{-t}+C e^{t}}\right\} \\
& s_{k}=\sqrt{\left(\frac{k \pi}{d}\right)^{2}+1} \\
& d=\frac{a}{b \beta}
\end{aligned}
$$

The series (3) is absolutely convergent because the remainder after the k-th term is $O\left(k^{-3}\right)$. Its first derivatives with respect to x and y are absolutely convergent too. In case of $C=0$ solution (3) coincides with the well-known Lechnicky's solution (Lechnicky, 1971).
The stress state of the rod can be determined as follows

$$
\tau_{x z}=\vartheta \frac{\partial \psi}{\partial y} \quad \tau_{y z}=-\vartheta \frac{\partial \psi}{\partial x}
$$

where
$\vartheta=\frac{M}{D}$ is the torsion angle per unit length;

$$
D=2 \int_{-\frac{b}{2}}^{\frac{b}{2}} \int_{0}^{a} \psi(x, y) d x d y=g a b^{3} B \text { is the torsional rigidity. }
$$

The values of the factor B are plotted in Figure 3 for various values of C and d. Maximum shear stresses are determined using the following formulas:

At point $B_{1}\left(\frac{a}{2}, \frac{b}{2}\right): \quad \tau_{\max }=\frac{M}{a b^{2}} k_{1}\left(B_{1}\right)$
At point $B_{2}\left(\frac{a}{2},-\frac{b}{2}\right): \quad \tau_{\max }=\frac{M}{a b^{2}} k_{1}\left(B_{2}\right)$
At point $B_{3}\left(0, y_{0}\right): \quad \tau_{\max }=\frac{M}{a b^{2} \beta} k_{2}\left(B_{3}\right)$
where

$$
\begin{aligned}
& k_{1}\left(B_{1}\right)=\sum_{k=1,3,5, \ldots}^{\infty}(-1)^{\frac{k-1}{2}} Y_{k}^{\prime}\left(\frac{b}{2}\right) \\
& k_{1}\left(B_{2}\right)=\sum_{k=1,3,5, \ldots}^{\infty}(-1)^{\frac{k-1}{2}} Y_{k}^{\prime}\left(-\frac{b}{2}\right) \\
& k_{2}\left(B_{3}\right)=\sum_{k=1,3,5, \ldots}^{\infty} k Y_{k}\left(y_{0}\right) \quad \sum_{k=1,3,5, \ldots}^{\infty} k Y_{k}^{\prime}\left(y_{0}\right)=0
\end{aligned}
$$

Figure 3. The Values of the Factor B Depending on C and d
The values of $k_{1}\left(B_{1}\right), k_{1}\left(B_{2}\right)$ depending on C and d are presented in Figure 4. It should be noted that the quantity $k_{2}\left(B_{3}\right)$ has only a weak dependency on C, therefore its values are presented not in a graphical but in a tabulated form (see Table 1).

Figure 4. The Values of $k_{1}\left(B_{1}\right), k_{1}\left(B_{2}\right)$ Depending on C and d

The values of y_{0} / b are presented in Figure 5. It is evident that for $C=1, y_{0}=0$.

Figure 5. The Values of y_{0} / b Depending on C and d

d	$C=2$	$C=3$	$C=4$
1.00	4.87	4.95	5.01
1.25	4.17	4.23	4.32
2.00	3.25	3.30	3.33
3.25	2.75	2.78	2.84
5.00	2.51	2.54	2.57
7.25	2.37	2.40	2.43
10.00	2.27	2.30	2.32
13.25	2.19	2.22	2.24

Table 1. The Values of $k_{2}\left(B_{3}\right)$ Depending on C and d
It follows from the data above that the material non-homogeneity has essential influence on the distribution of the stresses in the rod.

Example:

Let us assume that $\beta=1, a / b=2, C=3$. Then $d=2$. With the results from Figures 4,5 and Table 1 we can obtain that
$\tau_{\max }\left(B_{1}\right)=2.70 \frac{M}{a b^{2}}, \tau_{\max }\left(B_{2}\right)=5.30 \frac{M}{a b^{2}}, \tau_{\max }\left(B_{3}\right)=3.00 \frac{M}{a b^{2}}, y_{0}=-0.113 b$.

Literature

1. Eishinskii, A. M.; Adlucky, V. J.; Tsadikova E. T.; et al.: Torsion of the non-homogeneous rods with cross sections in the form of a rectangular and part of a circular ring (Russian). Modern problems of machinery industry and details of machines. Dnepropetrovsk, (1973), 132-149.
2. Lechnicky, S. G.: Torsion of the non-isotropic and non-homogeneous bars (Russian). Moscow, Nauka, (1971), 240 p .

Addresses: Alexander M. Eishinskii, Research Fellow, Mechanical Department, National Mining Academy of Ukraine, Serova 3, apt 7, UA-320000 Dnepropetrovsk, Ukraine. Ph. D. Victor J. Adlucky, Department of Applied Mathematics, Dnepropetrovsk State University, Zaporozhskoe shosse 4, apt 66, UA-320107 Dnepropetrovsk, Ukraine. Th. D. Elena Ts. Tsadikova. Lochnerstr, 41, D- 90441 Nürnberg, Germany.

