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Theoretical and Numerical Studies of the Shell Equations of

Bauer, Reiss and Keller, Part I: Mathematical Theory

M. Hermann, D. Kaiser, M. Schröder

We study the solution field M of a parameter dependent nonlinear two—point boundary value problem

suggested by Bauer et al. (1970). This problem describes the buckling of a thin-walled spherical shell

under a uniform axisymmetric external static pressure. The boundary value problem is formulated as

an abstract operator equation T(a:, A) = 0 in appropriate Banach spaces. By exploiting the equiuariance

of T we obtain detailed information about the structure of M. In Part H of this work, the theoretical

results are used to efiiciently compute interesting parts of M with numerical standard techniques.

1 Introduction

Let us consider the following parameter—dependent nonlinear two—point boundary value problem (BVP)

which describes the buckling behavior of a thin—walled spherical shell under a uniform axisymmetric

external static pressure

21W) = (U - 1) cot(t)y1(t) + 212(15) + [k 6090‘) — All/4(75) + cot(t)y2(t)y4(t)

3/205) 3 113(75) (1)

y'sU) = [€0t2(t) - V1312 (t) - C0t(t)y:«z(t) — 114(75) ~ 0-5 MUM/Li ('5)

111,405) Z 51/105) " VCOWÜZJAÜ 0 < t < 7r

92(0) Z y4(0) = 1120?) = 114(71) = 0 (2)

where y; (t) = m(t), y2(t) = q(t), y3(t) = s(t) are proportional to the radial bending moment, the

transversal shear and the circumferential membrane stress, respectively. The component y4(t) is pro-

portional to the angle of rotation of a tangent to a meridian and z/ is Poisson’s ratio. Let the radii of

the inner and outer surface of the spherical shell be given by r = R 2|: h, where R is the radius of the

midsurface of the shell and 2h is the uniform thickness. The parameter /\ and the constants kß are

defined by

_pR _1 h‘2 _1—V'2
() ß: k

 

where E is Young’s modulus and p is a uniform compressive load. In the sequel we refer to /\ as the load.

The above BVP was at first treated by Bauer, Reiss and Keller (1970). Since in the subsequent years the

theory of numerical methods for bifurcation problems was coming on, Hermann, Ullmann and Ullrich

(1991) consider equation (1) from the point of view of modern bifurcation theory. However, the work

of these authors is restricted to the buckling of a hemisphere, i.e., they use the following boundary

conditions instead of equation (2):

242(0) = 114(0) = y2(7r/2) = y4(7r/2) = 0 (3)

In the present paper we continue the investigations of Hermann et a1. (1991) for the more general problem

of a full sphere, equations (1) and (2). In particular, the symmetry properties of the problem and of

its solutions are examined. During the presence of such symmetries the amount of numerical work can

be decreased considerably. But the concept of a symmetric solution given in the paper of Bauer et

al. (1970) must be modified since the only solution of equations (1) and (2) which satisfies this criterion

is the trivial one.
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For our further considerations it is useful to transform equations (1) and (2) into a second order BVP

as’,’(t) = — coc(t):c’1 (t) + [cot2 (t) — u] 331 (t) — x20) — 0.5 cot(t)wä(t) 0 < t < 7r

2 — cot(t)a:.’2(t) + [cot2 (t) + u] 332(t) + ß [551(15) — A362 (t) + cot(t)$1(t)m2(t)] (4)

131(0) 2 502(0) 2 321(7r) 2 $g(7r) 2 O (5)

It is easy to show that equations (1) and (2) and equations (4) and (5) are equivalent. The solutions

of both problems are correlated by $105) 2 y2(t), 3:2(t) 2 y4(t), y] (t) 2 [y11(t) + 1/cot(t)y4(t)]/ß7

y3(t) = #30?)-

To simplify the representation we write equation (4) in vector notation

:1:"(t) 2 f(t,:c(t); A) 0 < t < 7r (6)

Problem (6),(5) contains the (control) parameter A which may vary over a certain specified interval

I‚\ C IR. Our goal is to obtain a global bifurcation picture of this BVP. In other words, we want to

determine numerically a part of the solution manifold

M E {(x, A) : A e R, a: 2 $(t; A) solution of equations (6) and (7)

In the following M is also called solution field of the parameter dependent problem. Obviously, the curve

of trivial solutions Cm], E {(0, A) : A E R} is a subset of M.

In addition to the dependence of the differential equations on the parameter A, problem (1),(2) (or

(4),(5) respectively) shows a further difficulty. The right hand sides of the differential equations have

singularities at t 2 0 and t 2 71- which are caused by the trigonometric function cot(t). For instance, in

the neighbourhood of t 2 0 we have cot(t) 2 t—1 — it — 4—15153 + . . . . Therefore, special techniques must

be applied to eliminate the so—called regular singularity.

The organization of the paper is as follows: In Section 2, the shell equations (6),(5) are transformed into

an abstract operator equation T(x, A) 2 0. On the basis of this operator equation fundamental properties

of the above model are discussed. In Section 3 we develop an explicit formula for the bifurcation points

on CW“, i.e., for those points where curves of nontrivial solutions branch off. We show that there are only

simple and double bifurcation points. However, double bifurcation points occur very rarely. In Section 4,

the consequences of the equivariance of the operator T for the symmetry properties of the solutions (as, A)

are described. In Part II of this paper we show how these theoretical results and appropriate numerical

methods can be applied to compute interesting parts of the solution field M of the shell equations.

Moreover, in the second part some interesting pictures of deformed shells are presented.

For the theoretical studies in Part I of this paper we assume that 1/ E [0.2, 0.5] and k > 0. The numerical

results in Part II are based on the values I/ 2 0.32 (steel) and k 2 10‘5 (thin shell).

In a forthcoming paper we will show that the analytical and numerical techniques presented can also

be applied to shell models with a higher degree of nonlinearity, e.g. to the shell equations of Troger and

Steindl (1991), pp. 356—365.

2 Operator Form of the Shell Equations

Since we want to use the results of modern bifurcation theory (see e.g. Chow and Hale (1982), Golubitsky

and Schaeffer (1984), Golubitsky et al. (1988), Kuznetsov (1995)), the BVP (6),(5) has to be reformulated

as an equivalent operator equation. In the definitions of the operator and the corresponding abstract

function spaces the (regular) singularities in the right hand sides of the differential equations must be

taken into account.

Let (Cg, l be the real Banach space of all kvtimes continuously differentiable vector functions
‘5 ‘z R2 . .. . (‚pi . (1)] ‚Z .2 _
a ($1,172) (0,7r) —> for whlch the limlts 1,11%:th (f), tl_1)r;1_ x, (f), 1 1,2, J 0,...,k, ex

ist. The associated norm is E max sup

"I ‚2 tE(0‚7r)

j20,...,k
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We can now define the operator T : X >< R —> Y by

[T067 /\)l(t) E 56"(15) - f(t‚:v(t); Ä) 0 < t < 7r (8)

where X E {x E C’ä : tlilälJr w(t) 2 £an x(t) 2 0} and Y E 08. The problem of solving the BVP (6),(5)

is eqiuvalent to solving the operator equation

T(x, A) 2 0 (9)

Looking for symmetries of the operator T we find that T is Zg-equivariant, i.e.,

T(SX;1:,)\) 2 SyT(;1:,)\) \7’(x,)\) E X >< R (10)

where the linear continuous involutions SX : X —> X, Sy : Y —> Y are given by

(ervflt) E -III(7r - t) (Si/11W) E -y(7T - t) W E (0.77) (11)

With the subspaces of symmetric elements (odd functions) and antisymmetric elements (even functions)

of X, namely X, E {ms e X : Sxass 2 wg} and Xa E {ma 6 X : S'an 2 —a:(,} respectively, we write X

as the direct sum X 2 Xs EB Xa. Similarly Y can be decomposed as Y 2 Y3 EB Ya.

Let 51:3, «ps 6 X3 and (0a 6 Xa. Then the equivariance of T implies

T(£L‘s,/\) E Y,» T$(a:s,)\)<ps e Y5 Tm(a:s,)\)<pa 6 Ya T,\(a:s,/\) 6 Y3

We now show that the Zg-equivariance of T allows us to reduce the amount of computational work when

solving equation In the following we call a solution z 2 (2:, A) E X x R of equation (9) symmetric,

antisymmetric or nonsymmetric if a: is an element of Xs, Xa or X \ (XsUXa) respectively. The symmetric

solutions of equation (9) are the solutions of

TlX3XR($Sv’\) = 0 (12)

This equation represents a BVP which consists of the differential equations (6), where the interval is

reduced to (0,7r/2], and the boundary conditions 27(0) 2 33(7r/2) 2 0. As will be demonstrated in Part II

of this paper, the restriction on the subspace X3 x R reduces by one half the number of the differential

equations to be integrated. Moreover, equation (10) implies that each solution (w,/\) of equation (9)

satisfies also T(SX;1:, A) 2 0. In other words, the nonsymmetric solutions of equation (9) occur in pairs

(zu, A) and (SXx, A), where a: aß SXw. Thus equation (9) must be solved only once to obtain both solutions.

One of the basic themes in the classical bifurcation theory is the study of the so—called singular points

20 E (2:0,/\0) E X x R which are characterized by T(zo) 2 0, dimN(Tz(zo)) 2 l, where Tx(z) : X —> Y

is the partial Fréchet derivative of T with respect to a: and N denotes the null space of the operator.

Using equation (8) we compute

[Tz(z)<pl1(t) = <p’1’(t) + cot(t)so’1(t) ~ 60t2(t)<p1(t) + V<P1(t) + [1 + 60t(t)w2(t)lso2(t)

[Tm(z)<p]2(t) = <P5’(t) + cot(t)<pé(t) - €0t2(t)<p2(t) - ß [1 + €0t(t)w2(t)]<p1(t) + (13)

+ (ß [Ä - C0t(t)$1(t)l - 1/)9020‘)

for all (p E (ca, 902) E X, z E (w, A) and 0 < t < 7T. With the linear and continuous operator

 

L I X —> Y (WW) E w”(t) + cot(t)so’(t) — W) (14)
sin2(t)

we write equation (13) in the form

[TAZWKU = (DPW) + [A(Z)l(t)<P(t) (15)

It is straightforward to show that the continuous elements (My-(z) : (0,7r) —> R of the matrix function

A(z) can be extended to 0 and 71'. Let the linear and continuous operator K(z) : X ——> Y be defined by

the formula [K(z)<p](t) E [A(z)](t)g0(t). Then, equation (15) implies the splitting T$(z) 2 L + K(z). We

are now in a position to prove the key result of this section. '

THEOREM 1 Let z E X x R be fixed. Then T73 (z) i5 a Fr'edholm operator with indem 0.
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Proof. We show that L is bijective (in particular a Fredholm Operator with index 0) and that K(z)

is compact. Since the sum of a Fredholm operator with index 0 and a compact operator is again a

Fredholm operator with index 0 the claim follows immediately.

1) The operator L is bijective: Because of SyL : LSX the restrictions Ls E L XS : X8 —> Y5 and

L, E L|Xa : Xa —> Ya are well—defined. Obviously, L is bijective if and only if Ls and L, are bijective.

We now show that L8 is bijective (the bijectivity of L, can be proved analogously). Since each element

333 E X3 (which satisfies the relations „(n/2) : w’s’(7r/2) = O) is characterized by its values on (O, 7r/2),

we define the following function spaces

 

II
I

X, E {Kuba its xlmmm, :1: E X3} and T’s E {333: 3],. E yImW/g), y E Y3} (16)

Using the homeomorphisms [X’s : X, —> X3, [X’sms E ) and [143 : Ys -> 17s, IY‚sys E ysl
_ E 7 JEä‘Ier/g 7 (om/2)

we set L, E IyysLsIEL, : XS —> Y3. Obviously, Ls is bijective if and only if L8 is bijective. A direct

calculation shows that for each Q, E 373 there exists an uniquely determined is E Xs with

 

cos/(t) + (cot - 5:3)105) = EIS/(t) + c0t(t)5:'s(t) — Sinäflmfi) : (Esme) = gs(t) 0 < t < 77/2

Thus L5 is bijective.

2) The operator K is compact: To prove the claim we want to use the Theorem of Arzela—Ascoli.

This theorem characterizes precornpact sets of continuous functions which are defined on a closed interval

[a, b]. For this purpose let h denote the extension of a function h : (0,7r) -—> Rm” (or W”), m, n E N, to

the closed interval [0, 71']. There are linear homeomorphisms

IszE{§::a:EX}—>X IX;EE.7: and Iyzf/E{Q:yEY}—)Y Iygzy

which are norm—preserving if the spaces X and Y have the same norms as X and Y, respectively. The

extension of rag), namely Km ; X —+ 1?, [Kamm E genome) for all e e X, 0 g t g 71', is related

to K(z) by K(z) : IyK(z)I§1. Thus it is sufficient to show that a?) is compact, i.e., that 1??) maps

bounded sets Ü C 22' onto precompact sets l7 E {K(z)<‚ö : a E Ü} C f”. The precompactness of V

follows from the Theorem of Arzela—Ascoli.

REMARK 1 Here we give some results for the hemisphere problem which was mentioned in Section 1.

0 Let equations (1) and (3) be transformed into a second order BVP where the differential equations

are restricted on (0,7r/2]. Now this second order problem can be written as T(.2“:s, A) = 0, where

T E Iy},(T XS ><R)(I)218('), : X3 >< R —> Ys. The solutions of this operator equation correspond to

those solutions of equation (9) which belong to Xs >< R.

0 We have Tgs(;ES,A) : Ls + K(ES,A) E L, + [Y’s K(I§713373,A) X [Es : X3 —-> The operator

 

L3 is bijective. The operator fairs, A) is compact because K(I§}s§:s,A) is compact. Consequently

Tisws, A) is a Fredholm operator with index 0.

As we will see in the next sections, further partial derivatives of T are required to characterize bifurcation

phenomena more precisely. Apart from Tw(z), the only nonvanishing derivatives are TA(z), Tm(z) and

T1A(z) = TM(z). Since these derivatives can be obtained by formal differentiation we do not give them

here explicitely.

3 Trivial Solution Curve Ctmuu

We begin the discussion of the solution field of equation (9) by studying the trivial solution curve Cm”.

In this section let z E (0, A). Our aim is to characterize and to determine all primary bifurcation points

20 = (0, A0). These singular points must necessarily fulfil dim N(T,,,(zo)) 2 1. We deduce from equation

(13) that

Immun=<Lso>(t>+A(A>[so(t>I V90€X0<t<7r A(A)s(”_+ß1 1_‚}+ß‚\) (17)

The study of the singular points 20 is based on
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THEOREM 2 Let A E R be a fixed value. The operator equation Tx(0,)\)<p = 0, (p E X, has only the

trivial solution if there do not exist eigenvalues of A()\) which are of the form ‚an E n(n + 1), n E N.

Otherwise, nontrivial solutions exist and a basis of the null space of Tw(0,)\) is given in the next table.

    

l A()\) is similar to a eigenvalues m- I eigenvectors vi basis ofN(Tz(z)) I

diagonal matrix 711 = ,umng 7t um‘v’m v1,v2 (P; o cos)v1

diagonal matrix m = ‚um/’72 2 pm 111,122 (P711 o c0s)v1,(P,1n o c0s)v2

Jordan block m = 772 = ‚an v1 (P; o cos)v1

      

Table 1. A basis ofN(Tm(z))

Here, P; o cos : t H P; (cos(t)), 0 < t < 7T, denotes the associated Legendre function of first order which

is even (odd) ifn is odd (even).

Proof. 1) Let A()\) be similar to a diagonal matrix with the eigenvalues 7}1,T)2 and the corresponding

linearly independent eigenvectors v1,v2 E R2. Given an element go E X, we define g1, 92 : (0,7r) —-> R

implicitly by the decomposition

Wit) 3 91mm + 9205)“: 0 < t < 77 (18)

Obviously, g) E Xe E {g: 3g E C2([0,n],R),g(0) : für) = 0,51 = g

 

(0 7r)}. From Tz(z)<p = 0, we obtain

 

(Legixt) + moi-(t) E 9N) + 00t(t)9é(t) - gilt) + mgdt) = 0 0 < t < 7T. i = 1,2 (19)
sin2(t)

The Lg—theor'y of the associated Legendre differential operator (see e.g. Triebel, 1992) implies that

equation (19) is nontrivially solvable if and only if m : ‚an for some n E N. Under this condition the

solution space of equation (19) is spanned by P; o cos7 where (P; o cos)v E X for all v E R2. Let us

define

i: 1,2 (20)
h__ PriOCOS m=n(n+l)f0rsomeneN

z— 0 77i#'n(n+1)forallneN

The decomposition (18) of (p implies N(Tz(z)) = span {hlvl , bang}.

2) Let A()\) be similar to a Jordan block with the double eigenvalue m and the corresponding eigen—

vector v1. Then the vector 112 defined by Avg 2 77le + v1 is linearly independent to v1. Considering

decomposition (18) the equation T$(z)<p = O is equivalent to

Legi + 77191 + 92 = 0 Les/2 +U192 = 0 (21)

With Ln g Le + 7711 formula (21) implies g; E N(L„) n R(L‚7). It can be shown that there exists an

extension L, of L77 which is selfadjoint on an appropriately defined Hilbert space. Thus, we have

92 E N(Ln) n R(Ln) C N(En) n Ruin) Z n Ran) : lain)i n RG01) = {0}

Then the solutions of equation (21) are {(g1,g2) z (91,512) = (c h1,0)7 c E IR}, where h is defined by

formula (20). Using decomposition (18) we find N(T„‚(z)) = span {ihm

By the last theorem the determination of all singular points zO E CW1, of T is equivalent to a simple

inverse eigenvalue problem of A(>\): Compute all numbers A E R such that the 2-by-2 matrix A(A) has

at least one eigenvalue u of the form n = n(n + 1) for some n E N. This problem is discussed in

THEOREM 3 Let A()\) be the matrix defined in equation (17). Then we have

(I) an E n(n + 1) is an eigenvalue of .4(/\) iff A = An 5 (ß—1 (2 —— unfit" — k — 1)/(1 + 1/ — an).

Obviously, An is positive.

(2) Let to be defined by to E —0.5 + \/l.25+ 11+ Then the sequence {An}, n E N, n Z t0, is

monotonoust increasing.

(3) ‚um is the other eigenvalue of A()\„) ifi P(m,n, 1/, k) E ß — (‚an — 1 — JIM/1m *1— 1/) = 0. Then we

have An : Am.
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Proof. 1) Let ‚um ‚u be the eigenvalues of A(/\n). The number An can be computed from the two scalar

equations det(A(Ä„)) = on ‚u and tr(A()\n)) = ‚un + ‚u.

„ ' _ 3-1 [2 — t(t +1)]t(t + 1) — k

2) Let the function A . [1, oo) —) IR be defined by A(t) E 1 + V _ t(t + 1)

A(n) = An for all n E N and tlim A'(t) z 00. If to 2 1 then the number to is the largest root of A’(t) 2 0.
—>oo

Otherwise, A’(t) > 0 for all t 2 1.

3) The third claim follows from Hm : ‚u 2 tr (A(‚\n)) _ „W

— 1

. We see that

 

REMARK 2 In practical computations the results of Theorem 3 can be used as follows. Part 1 gives an

explicit formula for the singular points on Clem-1,. The singular point 20 = (0, A) which corresponds to the

smallest value of /\ can be determined by part 2. Part 3 yields a criterion by which it is possible to decide

whether the dimension of JV(T‚„ (O,/\„)) is l or 2. Given the numbers k,1/ and n, P(m) E P(m,n, 1/, k)

is a quadratic polynomial in m. Therefore, the null space N(Tz(0, An» is two—dimensional if and only if

P(m) has a root in N. But this situation occurs very rarely in practice.

Let us now consider singular points Z0 which satisfy dimN(Tz(zo)) = 1. For this purpose some knowledge

about the null space of the adjoint operator [Tx(;r,)\)]* : Y" —> X * is required. The following theorem

yields this information.

THEOREM 4 Let F,G : X —> Y be two Fredholm operators with index O which satisfy the relation

(Gr/1,90% = man» for all WP E X, where

('i')w: L2((077T),IR2) X L2((077T)7R2) _> R (h’ag)w E /07rw(t) h(t)Tg(t) dt

Here, w is a given non—negative weight function. Assume that 1/11,...,1bk E X, k 2 1, is a basis

of N(G). Then we have dimN(G) : dim/V(F*) = dimN(F), N(F*) = span {wf,...,w,’;}, where

w;E(z/1i,~)w|y E Y", andY =R(F) EBspan{1/}1,...,wk}, = {y E Y:1/)§‘y=0,i= l,...,k}.

Proof, The claim follows by elementary calculations and Fredholm’s alternative.

Applying Theorem 4 with w(t) E sin(t) and

FEF(§)ET1;(Z)=L+K(5) GEG(2) :L+K(2) (22)

where E [A(ä)(t)]Tz/)(t) for all 2 E X >< R, we find [G(z)1/J](t) = (L1f1)(t) + A(/\)T1/J(t). The

equations Tz(z)cp : 0 and G(z)1b : 0 look similar. Therefore, replacing the matrix 440‘) by A()\)T in

Theorem 2 a basis of N(G(z)) can be obtained.

We now assume that N(T$(Zo)) = span {goo} with (/30 7€ 0. By Theorem 4 there exists a wg; 7t 0

such that N([T1(zo)]*) : span {1/15}. The singular point zo is a simple bifurcation point if the first

bifurcation coefficient (11 E waTM(z0)<p0 does not vanish. Then, in the neighbourhood of 20 the solutions

of equation (9) form two curves which intersect transversally in 20 (see e.g. Wallisch and Hermann, 1987).

The following theorem states that all points zo E Ctm, for which dimN(Tm(zo)) = 1 holds are simple

bifurcation points.

THEOREM 5 Let 20 E (O, /\o) and elements «p0 E X \ {0}, 1/25 E Y" \ {O} be given such that ‚AKTE(20)) =

span {900} and N’([Tz(zo)]*) = span {1/25}. Then a1 aß 0.

Proof. By Theorem 2 the matrix A()\0) has a geometrically simple eigenvalue ‚an for some n E N. Let

the corresponding eigenvector be denoted by ’U : (U1,UQ)T E R2. With the abbreviation qn E P}, o cos,

we have (p0 = clqnv for some c1 E IR \ The null space of G(z0) is spanned by we E qnw, where

w E (W1,U}2)T E R2 \ {0} is an eigenvector of A()\0)T which belongs to the eigenvalue ‚an. Using

Theorem 4 we obtain 1/15 = 02 (we, -)w]Y for some 02 E lRi\ {0} and w(t) = sin(t). Our assumptions k > 0,

1/ E [020.5] which we have posed in Section 1 and the equations A()\g)v 2 any, A()\0)Tw = ,unw give

111,112, 1111,1122 # 0. We now compute a1 = flc1chgw2 f0" sin(t)qä(t) dt 75 0.

4 Utilizing the Symmetry Properties of the Problem

Let us now consider the symmetry properties of the solutions of equation It is useful to distinguish

between nonsymmetric, antisymmetric and symmetric solutions. As we have seen in Section 2 the

nonsymmetric solutions appear in pairs. The following theorem states that there do not exist nontrivial

antisymmetric solutions.
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THEOREM 6 Suppose that zu E (27a,>\) is an antisymmetric solution of equation Then ma 2 O.

Proof. Let ma E (mama-“12). The equations (10) and T(x„‚>\) = 0 imply T(-a:a,)\) = O. From

[T(;1:a, /\)]1 + [T(—zca,)\)]1 = 0 we obtain wag = 0. Now [T(wa,)\)]2 z 0 yields mm1 = 0.

In the discussion of symmetric solutions of equation (9) we use the following general result.

THEOREM 7 Let 2: E (w,/\) E X >< R be given. Then dimN(Tw(z)) g 2.

Proof. Assume that (p E X is a solution of T$(Z)<p 2 0. Then the extension (£7 E (@mfig) E X of up to

the interval [0,7r] satisfies (see equations (14) and (15))

95”“) : - c0t(t)42>’(t) + <W) — A(t)</3(t)‚ 0 < t < 7r 93(0) = 0 Ah?) E [A(Z)](t) (23)
__L_

sin2 (t)

To obtain statements about the dimension of the solution space of equation (23) we transform this

problem into a (singular) system of first order differential equations which has been studied in a series

of papers (see e.g. de Hoog and Weiss, 1976,1977‚19857 Keller, 1976, Lentini, 1980). Let

4’1 (t) E ¢1(t)/t (1)205) E @305) (1’39) E <r32(t)/t (P40?) 5 @529) (24)

We compute

  

_ . 95105) _ . c{3105) —¢1(0) _ A/ _ _
431(0) —- 25135: t — 33%: t —' 901(0) - <I>2(0) and (1)3(0) — 4’40) (25)

Using the splittings

cot(t) = l — c6t(f) 1 = l + sTn(t) where lim c6t(t) : lim s’fn(t) : 0 (26)

t I sin(t) t ' t—>0+ t—>0+

the system of two scalar second order differential equations in equation (23) can be written as the first

order system

<I>’(t) : %M<I>(t) +g(t,<1>(t)) MI E ( ’i j ) M Ediag(M1,M1) (27)

The components of the function g : (07 7T) >< R4 —> R4,

91 (t, v) E 0 g2(t‚v) E [2sTn(t) + tsTnZ(t) —— ta11(t)]’ul + c6t(t)v2 — ta12(t)v3

93(t,v) E O g4(t,v) E —ta21(t)i)1 + [2s’fn(t) +tsTr12(t) — ta22(t)]v3 + c6t(t)v4

are continuous on (0, 71'). But 92 and 514 can be extended to t = 0 and are bounded for t —> 7r——. Formula

(25) implies @(0) E Let v0 E NUVI). By Theorem 2.1 in the paper of de Hoog and Weiss (1985)7

p. 94, there is a to > 0 such that the initial value problem consisting of equation (27) and 11>(O) = v0

has a unique solution (f on [0,t0]. Assume that (T) can be extended to ‘I> E C1([0, 7r)‚lR4) which solves

this initial value problem. Note that g : (0,7r) >< 1R4 —+ 1R4, g(t,v) E %Mv + g(t,v), is continuously

differentiable with respect to the second argument. In particular g is locally Lipschitz continuous. Thus

(I) is uniquely determined (see e.g. Demailly, 1994). Since dimN(M) = 2, there are at most two linear

independent solutions of the linear equation (27) which satisfy <l>1(0) : @2(0) and <I>3(O) = (1)4(0). The

claim follows by retransforming <I> according to equation (24).

Let us now consider elements zs E (.1387 Ä) E X3 >< R.

THEOREM 8 Suppose that dimN(T$ (23)) Z 1. Then there is a finite number of elements in X3 U Xa

forming a basis ofN(Tz(zs)).

Proof. Let B be a basis of N(Tz(zs))- Note CllHlN(Tz(zs)) S 2. For each (p E B decomposed as

90 : $03 + 9% E XS 69 Xa the equivariance of T implies 0 : TIQSWS + TAZSMG E Ys EB Ya. Hence,

T$(Zs)(ps : O and TI (Zs)(pa :

Theorem 7 and Theorem 8 give rise to classify the elements 25 E Xs x IR with dim N(Tz(zs)) Z 1 as
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follows (see Table 2(a)):

             

I type basis of N(T,„(z,)) l T‚\(zs) E R(T„(zs)) 7 | basis of N(G’(z,))

1 993 Yes 1/)3

2 (p3 H0 ws

3 90„ yes w“

(4) 9% no 111a

5 <1031 a 90.92 yes 22> 2ßsla 1/132

6 9051 ‚ (P52 n0 wsl ‚ 1/132

7 rm ‚ waz yes Ital ‚ m2

(8) <Pal 7 (Pa'l n0 M1, 1M2

9 rs, wa yes «ls, wa

10 9037 <Pa n0 dds: (pa

(a) (b)

Table 2. (a) Classification of 28 E X, x R, dimN(Tz(z8)) 2 1, (b) Null space of G(zs)

Part (b) of Table 2 is a conclusion from part (a). Let us verify the entries in Table 2(b). Theorem 4

and formula (22) imply dimN(G(zs)) : dim N(Tz(zs)). Because of (G(zs)¢,<p)w = (1/),Tm(zs)<p)w for

all it, go E X, we have (SyG(Zs)’(/J — G(zs)SXz/1,gp)w = 0 for all 112,90 E X. Moreover, X is a dense subset

of L2((0,7T), W) with regard to - “w E x/(v‚ Thus SyG'(Zs) = G(zs)SX. It follows that there exists

a basis B of N(G(zs)) with elements in X3 U Xa (compare Theorem 8). By Theorem 4, 1/) ¢

for all it E span [3. Because of equation (10), the assumption Tz(zs)u 2 vs E Y3 and the splitting

u : us + ua E X3 69 Xa give 0 : [Tx(z3)us — Us] + [Tm(w5)ua] E Y; EB Ya, i.e., T$(zs)ua = 0. Hence,

each vs E R(T„(zs)) n Ys has a symmetric pre—image us. Therefore, R(T2(z9) X8) = R(Tz(zs)) n Y3

and YS = R(T‚„(zs) XS) EB (SpanB n Ys). Obviously we have N(Tm(zs) X5) = N(Tm(zs)) n X3. Since

TI( 5) X5 2 L, + K(zs) X3 is a Fredholm operator with index (J (L5 is linear, continuous and bijective,

K(z,.) X3 is compact) we find dim(N(Tm(zs)) n XS) : dim(spanB n YS).

      

In Table 2(a) the numbers 4 and 8 are put in brackets since these cases cannot occur. This can be

shown by the following arguments. Let us first consider elements 23 of the type 4. Looking at Table 2(b)

we see that there exists a 1/1„ E Xa \ {0} such that : span {1/10,}. Now Theorem 4 implies

ngA(zs) = (wa,T,\(zs))w : f0” sin(t)wa(t)T[T,\(z,)](t)dt. Since T,\(zs) E Y8, the integrant is odd and

the integral vanishes. From Theorem 4 we obtain T,\(z,) E This result contradicts the

corresponding entry in the third column of Table 2(a). Thus our claim is proved. The existence of

elements 28 of type 8 can be excluded by the same arguments.

To prepare the next theorem we give two formulas which can be easily verified:

X. some) = mg) (28)

THEOREM 9 Let ZoS E ((1)05, Äo) E Xs X R be a singular point of the operator T. Using the classification

given in Table 2(a), the following statements describe the solution field of equation (9) in a sufi‘iciently

small neighbourhood U of zog. The scalar 50 is assumed to be an appropriate positive real number.

(1) Assume 203 is of type 1, 2, 5 or 6. Then, all solutions 2 E U are symmetric.

(2) Assume 203 is of type 2. Then, zog is a limit point of T. The solutions z E U form a curve

C : {(a:(€),>\(6)) E (51:0S +E<P03+w(e), A0 +T(E)) : |5| < so}, where 111(6) belongs to the complement

of N(Tx(z03)) in X, = x03, M0) = A0 and C C X3 >< R.

Assume 208 is of type 3 or of type 7. Then, the symmetric solutions zs E U represent a curve

C = {(1:3(A), A) : |A0 — /\| < 80} with 11:3(/\0) = $08. In U all other solutions are nonsymmetric.

(4) Assume zog is of type 10. Then zog is a limit point of T szR. The symmetric solutions zs E U

form a curve C : {(ws(e),)\(e)) E (:1703 + 59003 + w(e),}\o + 'r(e)) : lel < 50}, where 111(5) belongs

to the complement of N((T szR)z8(z03)) in X3, $S(O) = $03 and M0) = /\0. In U, all other

solutions are nonsymmetric.

(T

   

szR)$s(ZS) = T:B(Zs) Xs and (T

  

Proof. 1) For the types 1, 2, 5 or 6 the claim can be proved by the same technique. We demonstrate the

basic idea for the case N(Tz(z03)) : span {gags}, 9003 E X, \ {0}, only. Table 2(b) and Theorem 4 state

that there is 31/103 E Xs,1/)gs G R(TZ(Z08)). Then X : N(Tz(zos))63X1, X1 E {w E X: (‚06811) = O}, and

60



Y 2 R(Tz(z03)) EB span {1/103}, where (033 E X* satisfies $559003 2 1. Using formulas (28) we conclude

X3 2 N(T$(203)) EBle X13 E {wg E X, : (p6st 2 0}, and Y, 2 R(Tm(zoS)|Xs) 6 span{¢os}.

We define G : R >< R x X1 >< R —+ Y, where G(€,A,w,g) E T0170, + 59003 + w,A0 + A) + giflos, and

Ö : Rx R >< X13 >< R —> Ys, where G(5,A,ws,g) E T szR (9:05 +e<pos +103, A0 +A) +gz/203. The solutions

(E,A,w) of T(JJ03 + 59003 + w,Ao + A) 2 0 correspond to the solutions (E,A,w,g) of G(E,A,w,g) 2 0

with g 2 0. Furthermore, x03 + 89003 + w E Xs if and only if w E X3. Thus we consider the equations

G(u,u) 2 0 and C(ufli) 2 0, where u E (e,A), v E (w,g) and i") E (ws,g). Obviously, G(0‚0) 2 0

and Ö (0,0) = 0. We now show that there exists a neighbourhood U of (110,120) 2 (0,0) such that the

solutions of G (u,u) 2 0 contained in U have symmetric X1—comp0nents, i.e., w E X1 n Xs. The partial

derivatives G (u„g)(0, 0) and Öwmg) (0, O) are linear homeomorphisms. Thus the implicit function theorem

guarantees the existence of neighbourhoods U C R x R, V C X1 x R, Ü C R >< R and V C X13 >< R

of the corresponding origins as well as the existence of continuous functions w : U —> V, 2 0, and

d} : Ü —> V, (21(0) 2 0, such that G(u,u) 2 0, (u,v) E U >< V, if and only ifu 2 w(u), and 6501,17) 2 0,

(71,17) E U X V, if and only if 17 2 Without loss of generality we can assume that U C U and

E V for all ü E U. Let (um) E U x V with G(u,v) 2 0. Then, i) 2 Because of X13 C X1

we have G(u,LZ)(u)) 2 Ö(u‚ü(u)) 2 0, where (u,d1(u)) E U >< V. Thus 1) 2 w(u) 2 @(u), i.e., the

X1-component of ’U is symmetric.

2) The solution field in the neighbourhood of limit points is studied in the book of Wallisch and Hermann

(1987). The statement C C XS X R follows from part

3) The symmetric solutions of equation (9) satisfy equation (12). Clearly, T szR ($03, AU) 2 0. Since

N(Tz(z0,)) C X, and T,„(z05) X3 is a Fredholm operator with index 0, (T szRMSQZOS) 2 Tm(z08) X3 is a

homeomorphism. The statement about symmetric solutions follows from the implicit function theorem.

4) The claim can be proved by arguments which we have used before.

     

REMARK 3 Let zog be a solution of type 1 (see Table 2). If 7- E a7 — 52 < 0 (see e.g. Wallisch

and Hermann, 1987) then 203 is a hyperbolic point and the solutions in the neighbourhood of 203 are

symmetric and form two curves which intersect transversally at zog. If 7' > 0 then zog is an isola center

(see e.g. Keller, 1981, Seoane, 1994).

Let zog be a solution of type 9. Then, ‚20, is a singularity of type 1 of T

 

Xs xR'

We now consider those solutions 205 E X8 >< R of equation (9) which cannot be assigned to one of the

ten classes discussed above. These are the so-called isolated solutions which are defined by T(205) 2 0,

Tm(208) is a linear homeomorphism.

THEOREM 10 Let (A_,A+) C R, Cm, E {($(A),A) E X x R : A E (A_,A+)} be a curve of isolated

solutions of equation (9) and A0 E (A_,A+) with $(A0) E X8, Then C530 C XS >< R.

Proof. Let (33*,A*) E (33(A,.), A*) be an arbitrary element of Ciso n (X3 X R). Using equation (28) it

is evident that (:1:*,A,.) is also an isolated solution of equation (12). Now the implicit function theorem

states that there exist neighbourhoods W E U x V C X >< R and W, E Us x Vs C X, x R of (517*, A*) as

well as continuous functions to : V —> U, w(A*) 2 ax, and wS : V5 —> Us, ws(A,.) 2 xi, such that

T($,A) 2 0, (:t, A) E W <=> a: 2 w(A) T

 

szR (mS,A) 2 0,(:1:3,A) E Ws 42> zus 2 wS(A) (29 a,b)

Without loss of generality let V8 satisfy V9 C V and ws(A) E U for all A E Vs. Suppose ($,A) E U >< V8

is a solution of equation We see from equation (29 a) that a: 2 w(A). By equation (29b), (wS (A), A)

solves equation (12). Hence, (2:, A) and (ws(A),A) E U >< Vs are two solutions of equation (9) in U x V.

Now equation (29a) implies a: 2 w(A) 2 ws(A) E X8. Thus, all solutions (m(A),A) of equation (9) are

symmetric for A in a sufficiently small neighbourhood of A...

Applying the arguments discussed above to (zu, , A..) E (MAG), A0), we find x(A) E X, for all A E (7-, 7+),

where A_ S 7_ < A0 < 7+ g A+. Let 7_ and 7+ be the smallest possible value and the largest possible

value, respectively. Assume 7. > A_. Then AJim)+(m(A), A) 2 (sc(7_),7_) E Ciso, where 93(7-) E X3.

We set (35*, A*) E (513(7_),7_) and obtain E X, for all A in a sufficiently small neighbourhood of

7-. Therefore, A_ 2 7-. This argument can now be repeated almost verbatim to show A... 2 7+.

The following result can be used to detect secondary bifurcation points (see Part II of this paper).

THEOREM 11 Let F1 E {($(E),A(6)) : IEI < 50} and F2 E {(Sxa:(8),A(e)) : (a:(E),/\(8)) E H} be

two branches of nonsymmetric solutions which can be eatended to e 2 80. Let zo E (23(50),A(50)) 2

(SX$(€0),A(€0)). Then 35(50) E XS, zo is a singular point ofT and N(Tz(z0)) n X0 ‚+—

Proof. Since T, E H and e H A(e) are continuous, T(z0) 2 0 holds. From 17(50) 2 SXx(eo)
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it follows Mao) 6 X3. We assume dimN(Tz(zo)) = 0. The implicit function theorem says that in a

neighbourhood of 20 all solutions of equation (9) form a uniquely determined curve C. Applying the

first part of the proof of Theorem 10 to ($*,A*) E 20, we obtain a neighbourhood U of zo such that

U flC C X, >< R. Then we deduce the contradiction (F1 U F2) n U = (C \ {z0}) n U C X, >< R. Now, let

N(Tm(zo)) C X3. By Theorem 9(1) there is a neighboorhoud U of 20 such that all solutions of equation

(9) in U are symmetric which contradicts (F1 U F2) n U C (X \ X3) x 1R.
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