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The Prediction of Guaranteed Life Characteristics due to Fatigue

Failures with Incomplete Information about Random Loading

V.A. Zhovdak, L.F.Tarasova

The guaranteed life prediction problem for structural elements is investigated. Random external loading and

fatigue failures are taken into account. Firstly, the mean life definition problem is solved Secondly, the turbine

blades guaranteed life prediction with incomplete information about random loads is considered

1 Introduction

In solving the problems of reliability theory at the design stage there is often the situation when the necessary

statistical information about the vector of external load is lacking. In this case the reliability prediction has to be

realized under conditions of statistical indeterminacy.

2 Formulation of the Problem

Let us consider a case, when the initial information is incomplete regarding the vector of external load, which is

the vector of broadband random processes. As a lot of machine—building structural members have pronounced

filtering properties, the power spectral density (PSD) Sx(w) of the external load vector X(t) can be considered

as constant within the limits of narrow frequency ranges |co — wii S AI corresponding to the resonance

frequencies. It is supposed, that experimentally it’s possible to define the boundaries of modification of the PSD

Sx(0)) and variances o- i ofthe external load vector X(t) . Let us specify the set Mx of the piecewise constant

PSDs of the vector X(t) :

S,- :const,lw—o)ilSA,.;

Sx(03)= 7x, <s,.<1"x,,(i=f;§);

M = 0,]m—0)„>A‚-;
(1)x

of = JSx(on)dco < FG;
0 .

where yxi, PX,» are accordingly lower and upper vector change restrictions of the vector Sx(03) at the natural

frequency 0),- ; I“Cy is the vector change boundary of the variances vector 63‘ . The components of the external

load vector are assumed to be mutually independent.

The reliability prediction problem in the case of incomplete information about the external load vector may be

turned into determination of the lower or guaranteed evaluation of one of the system reliability parameters for

the most unfavorable possible values of the PSDs vector Sx(m) taken from the set M)‘ . Where the mean life

mT is involved it is necessary to define the lower evaluation of the life according to the set Mx, i.e. the

guaranteed life mm :

m. = min m. 2
7H Sx(03)eMx 7 ( )

The stated problem is a problem of the target function optimization (2) with the parameters variation of the

vector Sx(o)) having the restrictions in the form (1).
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3 The Mean Life Determination

As the first step of the mean life prediction the stochastic dynamics problem is considered. The connection

between the external load vector X(t) and the vector Y(t) of stress-strain state parameters may be presented in

the operating form

LY(t) = X(t) (3)

where L is a linear determined operator.

For broadband random loading and low damping the components of the vector y(t), representing stress-strain

state parameters are the superposition of the narrow-band random processes y k(t) with the fundamental

frequenc1es 03k

ya) = ika) = iy„k(z)cos[wkr+aok(r>] <4)
k:l k:l

Here yak (t) is the envelope (amplitude) ofthe narrow—band random process y k(t) ; wk is the system vibration

natural frequency; (pk (t) is the vibration phase, uniformly distributed over the interval [0,211].

Further the average time before fracture due to fatigue damage accumulation is determined. For this, on the basis

of the random processes schematization method the broadband process y(t) is adjusted to the narrow-band

process ye (t) having the equivalent damaging effect

ye(t) = yae(t)005[wet+®e(f)l (5)

Let us use the one-dimensional schematization of random processes according to the methods of peaks or

complete cycles. The analytical expressions for one-dimensional probability density of the equivalent amplitudes

yae(t) of the Gaussian random process are obtained earlier (Gusev, 1984; Kogaev, 1977). The equivalent

process frequency the in the first method is equated to the number of peaks - in the second method to the

number of zeros of the initial broadband process.

For the linear hypothesis of damage accumulation and degree approximation of the fatigue curve the fatigue

damages measure Z(t), accumulated at a certain point, is described by means of the kinetic equation of the

following kind (see Gusev, 1984):

dZ(t) Z they; (I)
(6)

d! 275NOÜT] y

Here N0, m, (L1 are the parameters of the fatigue curve. To define the damage measure at the time I let us

integrate the equation (6) within the limits [0,t] provided that Z(O) = 0 . Averaging the obtained equation and

equating the damage measure to one, we shall get the formula for the definition ofthe mean life mT

_ 0) °°

WIT1 2—417,— IyZL./‘(yae)dyae

27tN00'_1 6'1

4 The Guaranteed Life Prediction

Let us consider the solution of the given problem as applied to the blades of axial turbines. The dynamic loads,

acting on the blades of turbines and compressors, are considered as a space - time random field, allowing to take

into account all main factors of the nonuniformity and randomness of an aerodynamic flow. Mutual

independence of circular and radial nonuniformity is supposed that allows to present the load field as the

product of the determined load distribution function along the blade R(r) and the field d)(t,(p), describing the

circular flow nonuniformity as well as the random pulses of impact pressure before the stage under study.
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Q0, (at) = R(r)<D(t, (P + Qt) (8)

where Q is the angular velocity ofthe turbine wheel.

The pressure field CD(t, (p) can be expanded into a complex Fourier series in terms ofthe variable (p

@(MH Qt) = ZCk (t) e><19(ik(<P+ 90) (9)

k=—ao

Here Ck (t) are the random broadband processes with the PSDs Sck (0)). As a result of the solution of the

problem on random Vibrations the loads, represented as equation (9) allow to obtain the stress spectrum,

qualitatively representing the amplitude-frequency response, i.e. having pronounced peaks at natural

frequencies. In the general case the functions Ck (t) are complex and the correlation between the real and

imaginary parts of the process Ck (t) is supposed to be unvariable. Thus, the correlation function and the PSD

are real. Let us introduce the random process gk (t) = Ck (t) exp(ik£2t) . The PSD Säk (0)) of this process will be

identical to Sck (0)) but with the 0) —shift by the amount kQ . These with the load field may be presented as

Q(r,<p,r) = mafia (nexpakcp) (10)

It is supposed that the determined distribution of the external load along the blade R(r) is given; the PSDs

Sgk (03,-) ofthe broadband processes ék (t), (k = L—n) at the natural frequencies 0),. ‚ (i = L—m) is constant within

the limits of the resonance peaks of the frequency response; the boundary changes of the PSDs of processes

ik (t) at natural frequencies and the upper boundary of the external load variance are known. Further, according

to equation (1) the set MX with power spectral densities of broadband processes §k(t) as components of a

vector S,- is formed and the presented problem is reduced to the determination of the guaranteed (lower)

evaluation of the blade mean life mm for the most unfavorable variant of external load for the described

mathematical model.

This optimization problem can be solved in terms of stresses. The submission of loads as equation (10) and the

assumption that the processes ék (I) are stationary allow to use spectral methods of analysis in order to solve the

problem of statistical dynamics. According to the method of spectral presentations (Bolotin, 1984) the PSD of

the stresses Sy (mm) in the given blade section is determined by the following formula

Sy(r,(1))= kg SQ, (w),H,§(r,co) (11)

The frequency response of the system Hk (r, 0)) is obtained from the solution of the problem on the blade forced

determined vibrations. In order to solve the determined problem we can use the design procedure for the blade

forced vibrations (Petrov, 1981) according to which the turbine blades are considered as naturally twisted rods

of variable non-symmetric section and with elastic restraint in the disc. This design is based on the initial

parameters method in matrix form combined with the discrete models of blades. The discrete model is a system

of concentrated masses conncctcd by inertialess elastic sections. Applying the general scheme of the initial

parameters method, we obtain the vibrations column vector in each blade cross-section. This vector of

parameters consists of ten components: axial and tangential displacements; three turn angles, two transversal

forces, two bending moments and a torque moment. These parameters allow to calculate stresses and

displacements in any blade cross-section.

The stress presentation as equation (4) allows to define the stress variances at the i-th natural frequency from

k -th load component at a given blade cross-section

m‚+A‚-

0;“ (r) = 5g j H,3(r,oo)dm z Säk (03)0Lk‚(r) (12)

03‚A
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where

0),+A,

ocki(r) = j H,E(r,m)dw (13)

m‚—A-
l

The restrictions yyk, and PM ofvaried parameters 62ka (r) are connected with the boundaries Sgk as

: (x i

Yyki Yéki k

1“YA-i : Itill-i0”i

Consequently the total stress variance may be presented as

oi(r)=ZZSgk(w,-)otk,(r) (15)

k I

The set My is given similarly equation (1). In this case the components of the vector S,- are the stresses

variances oi“. The restrictions vyh, Ty“ may be obtained from equations (13), (14) if the appropriate

parameters for Säk are known. Otherwise, they can be obtained on the basis of experimental measurements of

the working blades vibration characteristics.

5 Numerical Investigation

On the basis of the described approach the GTE-45-3 axial compressor 2nd step working blades mean life

account was performed. The optimization problem was solved in terms of stresses, i.e. the stress variances of

endangered blade section were used as variable parameters. A search for the guaranteed life and accordingly for

the worst relation between stresses variances was carried out at the first four natural frequencies ((1)1 = 165Hz,

032 = 520 Hz, 033 = 1310 Hz, 034 21515 Hz). The variable parameters restrictions were changed within the

following limits yyi : 0.5 to 10 ( MPa)2-s, PM = 10 to 60 (MPa)Z.s. The optimization results for different varied

parameters restrictions are given in Figures 1 to 4. Where S; - is the most critical PSD of the stresses at

prescribed restrictions, mm / T1 - is the guaranteed life value to fundamental frequency period value relation.

The «black» columns means the real calculation results of PSD peaks. The section-line columns determine the

restrictions of varied parameters. The broadwidth of columns is defined by filtering properties at the every

natural frequency. Numerical analyses of the guaranteed life allow to draw the following conclusion: The most

critical PSD is directly related to restrictions values and to the natural frequency spectrum.
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Figure 1. The most critical PSD at prescribed restrictions:

7y = {1,1,1,1}", r}, = {40,40‚40‚40}T
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Figure 2. The most critical PSD at prescribed restrictions:

7y z {2,5‚3,5}"'‚ ry = {40,50,30,50}T
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Figure 3. The most critical PSD at prescribed restrictions:

7, = {2‚5‚1‚0.5}T‚ r}, = {40,60,20,10}T
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Figure 4. The most critical PSD at prescribed restrictions:

7,, = {2,10,3,0.5}", r), = {40,60,40,10}"
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