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Adaptive Local-Global Analysis by pNh Transition Elements

U. Gabbert, K. Graeff—Weinberg

The paper presents a newfamily offinite transition elements, which we named pNh-elements. The pNh-elements

are especially designedfor a compatible transition from a h—refined to a p—refined mesh region. At one or more

sides of a pNh-element a h-discretization with N piecewise defined shape functions are combined with a p-

extension at the remaining parts of the element. The elements pass the patch test and can be used in an adaptive

finite element scheme, where an extended Babuska error indicator has proved to be reliable. The proposed pNh-

elements have been tested within a special finite element code as well as a commercial code. A number of nu—

merical tests and real engineering examples demonstrate the suitability, especially if local mesh refinements are

required (e. g. multiscale problems, contact problems).

1 Introduction

A finite element software is expected to solve a given engineering problem as accurately as necessary at reason-

able cost. In addition the creation of a good mechanical model should be automatically supported by the soft—

ware. We believe that software products based on intelligent finite element techniques will dominate the future

software market. Due to the extensive research and development activities in the recent decade carried out by

engineers and mathematicians a good theoretical basis exists for future developments in the direction of more

intelligent finite element technologies. Very important milestones are the developments in the field of error esti-

mation by Babuska and Rheinbold (1978), Zienkiewicz and Zhu (1987, 1992) and the work in the field of h—, p—,

hp-, r— and s-adaptivity resulting in series of important papers (see e.g. Babuska, 1988; Oden et al., 1989; Szabo

and Babuska, 1991; Fish, 1992; Wiberg, 1994). The discretization error of a given finite element model can be

accurately calculated by a posteriori error estimation techniques, which are the basis for an adaptive h— and/or p-

extension. With respect to large engineering problems it is nearly impossible to carry out several analysis steps

before achieving a certain accuracy. Based on a priori knowledge about the behaviour of the solution an optimal

locally refined initial mesh can be created automatically, which leads to a considerable reduction of further ad—

aptation steps (see Gabbert and Zehn. 1995). The accuracy of finite element results depends not only on the

discretization error, but is significantly affected by the created mathematical model, i.e. the dimension of the

model (e.g. 1D, 2D, 2 1/2D, 3D) and the quality of the model (e.g. Bernoulli or Thimoshenko beam theory,

Kirchhoff or Mindlin plate theory etc.). The important contribution of Stein (see e.g. Stein et al., 1993, 1995,

Jensen, 1990) has opened the door to a practical application of a mathematically well founded dimensional and

model adaptivity which is one of the major steps on the way to intelligent finite element technologies. Finally,

except of the mathematical projection error the quality of the numerical simulation of real engineering problems

depends on the physical projection error, which has to be assessed by measured data. Consequently, a combina-

tion of updating the mathematical as well as the physical model (see e.g. the survey given by Mottershead and

Friswell, 1993; Gabbert et al., 1995) seems to be the best way leading to reliable simulation results. Unfortu-

nately, only few of the actual research results are incorporated into commercial finite element codes. Among

other things, this is caused by a number of specific problems in practical applications, which are yet unsolved. In

linear elasticity — the most used model in solid mechanics applications — a combination of the h- and the p-

adaptive version has proved to be the best finite element strategy with respect to the discretization error and the

convergency rate (see e.g. Oden et al., 1989; Szabo and Babuska, 1991). Oden et a1. (1989) developed a strategy

for choosing local mesh size and polynomial degrees to reduce elementwise errors below a given tolerance. By

means of hierarchical shape functions and mesh refinements from one to two elements with constraint conditions

for the hanging nodes convincing results have been presented for simply shaped geometries. In real engineering

problems the behaviour of the solution is often characterised by smooth functions of the field variables (e.g.

stresses, displacements, temperatures etc.) in most parts of the solution region and singular or nearly singular

behaviour in other parts (e.g. due to material inclusions, cracks, contact etc.) Often a very dense h-discretization

is required in these local regions to achieve a prescribed accuracy. An application of an optimal combined h- and

p-adaptive finite element technique requires a very flexible interface for the coupling of h- and p—refined mesh

regions. The usual mesh refinement techniques (see Figure 1) are not very flexible in grading the mesh (espe-

cially in 3D applications). They lead to artificial mesh distortions and are difficult to apply in the p-version.

Alternatively, an incompatible mesh refinement technique can be used, where the penalty method or Lagrangian

multipliers are used to fulfil the constraint conditions. The main disadvantage of this technique is the loss of

accuracy in the local region caused by the constraints.
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Figure l. Usual Mesh Refinement Techniques in 2D Problems

To overcome the problems in coupling h- and p-refined regions we created a new transition element concept,

which allows a flexible connection of any p—type element with any number of usual h-elements and conse-

quently, the desirable local mesh refinement of Figure 1 can be obtained in a manner shown in Figure 2.
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Figure 2. Mesh Refinement by Special Transition Elements

The transition elements are special p—version elements with the usual hierarchical polynomial shape functions,

which are able to generate any number N of piecewise defined h—discretizations at one or more sides or faces of

the element. Therefore the name pNh-transition element is self—explanatory. In Figure 3 the very flexible cou—

pling of a h-refined mesh domain with a p-type mesh domain is demonstrated. It is not necessary to divide the h—

refined side of the pNh-element into sections of equal length and the polynomial degree can also be different at

every h-part.

 

Figure 3. Domain Decomposition in (a) p-Type, (b) pNh-Type and (c) h—Type Elements

2 Theoretical Basis of the pNh-Elements

As we mentioned above the pNh-elements can be considered as special p-type finite elements. The usual p—

elements extend the linear finite element function space by additional shape functions of higher polynomial

degree. It has been proved (see Szabo, et al. 1991) that hierarchical functions as additional shape functions have

a beneficial influence on the numerical properties of the problem (e.g. condition number of the stiffness matrix).

Consequently, we use the Legendre polynomials

  

P.(x>= 1,. d" (xZ—l)" m
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to construct the p—type additional shape functions by the normalised integrals of Pn (x):

¢,.(§)= (MT—1) iPn_1(x)dx n 2 2 (2)

x=—l

whichresuhinoz = 556—1), o3 = 515(64), $4 = finite—6am),

(1,5 =äfiä©g5 —10§3 +3g), ¢6 = ägfißxö 4052:5 +45§2 —3) etc.

From the definition of (1)" and the orthogonality properties of the Legendre polynomials we have:

¢n(_1) = ¢n(+1) ’1 = 2,

and

 

Imamndg:{0 for min (4)

_1 8E, 82: 1 for m=n

2.1 Standard p-Element as Basis for the pNh-Elements

Exemplary in the following we give a general description of the displacement approximate functions

fii(§1,§2,§3 ), i = 1, 2,3 of a CO continuous hexahedron element (see Figure 4) of the polynomial degree p,

which consists of corner—modes, edge—modes, face—modes and inner—modes:

17—4 p—l p—l—m

Lug): gags—M,” E Ewe-aim + i pf EmBMe-bw + z same-cum, (s)

 

e=l n=2 f=l m=2 n:2 1:2 m:2 n=2

%———v—____——_/

G(&) ACE) mg) 6(a)

linear corner-modes pvedge-modes p-face-modes p-inner-modes

The üic, aiembij-mn, cilmn , i = 1, 2, 3 are the unknown parameters of the approximate function, where only the üic

have a real physical meaning namely the eight displacements at the corners = i1) and the

GC, Am, Bfmn, C[m are the shape functions of the corner modes, edge modes, face modes and inner modes re-

spectively, which are constructed as follows.

Corner modes

With the linear functions in natural co-ordinates

at.) = gum) (6)

where Em are the local co-ordinates at the eight corners (c = 1,2, 8) we get the eight standard shape functions

of a eight node hexahedron

Gc(§i»§2a§3)= gc(E.v1)'gc(‘t32)' gc(§3) (7)

Edge modes

At every edge of the hexahedron functions of higher order (p 2 2)are defined, which are multiplied by linear

functions in the remaining directions resulting in a sum of 12 (p w 1)shape functions for the twelve edges. For the

edge e :1 (see Figure 4) the shape functions are

A1n(§1:§2:§3)= ¢n(§1)'81(§2)‘g1(3) (8)
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Face modes

At every face of a hexahedron the product of one dimensional functions of higher order degree (p 2 4)in the

local face co—ordinate system are multiplied by a linear function in the remaining direction resulting in a sum of

6% (p — 2)(p — 3)shape functions for the six faces. For the face f =1 (see Figure 4) the shape functions are

Blmn(§l’§2’§3) = ¢m(§1)-¢n(2)' g1(§3) (9)

Inner modes

In all three local co-ordinate directions the product of one dimensional functions of higher order degree

(p 2 6)results in — 3)(p -— 4)(p ——5)shape functions of the type

Clmn(§l’§2’§3)= ¢I(§1)‘¢m(§2)' ¢n( 3) (10)

The above defined shape functions are continuous and differentiable over the total element region and due to

equation (3) every individual function vanishes at those corners, edges and faces respectively where they are not

related to. The construction of the shape functions of the quadrilateral element follows from equation (5) ne—

glecting the Q co—ordinate. Other element types (triangular, tetrahedron, pentahedron etc.) can be constructed in

a similar way.

 

r
l

C:1 1 st c=2

f=2 5:1

quadrilateral p-element hexahedron p-element

 

Figure 4. Standard Quadrilateral and Hexahedron p-Type Elements (c — corner, e — edge,f— face)

2.2 Shape Functions of the pNh-Elements

The pNh-elements differ from the standard p-elements by an alternative piecewise formulation of the shape

functions at one or more edges or faces. At these so called Nh-edges or Nh—faces nodes are introduced, which

span the piecewise functions in a manner that they are compatible with lower order elements. Consequently, a

compatible coupling of one p-elements with any elements of normally lower order shape functions is possible

(see Figure 3). Of course this concept is not restricted to p—type elements as basic, which are preferable because

of the better numerical properties. Also node based Lagrangian or Serendipity elements can be used as basis for

the development of pNh—elements (see Figure 5).

Serendipity

element face

standard p—type

element face

    

Nh—edges

   

 

Nh—faces with

polynomial degree

p=1 p=2

Figure 5. Different Types of pNh-Transition Elements
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The construction of the shape functions of the pNh-elements requires only to change those parts of the general

approximate function of a p-type element in equation (5), which are related to the Nh-edges or Nh—faces 0f the

element. We assume that the edge e =1 (Figure 4) is a Nh—edge subdivided in n = 1 ,..., N parts with piecewise

linear and quadratic shape functions respectively (see Figure 6).

c=3  C=4
c=3

 

C=l kzl iäkä c=2

n 1 e=l

linear Nh-function quadratic Nh—function

Figure 6. Standard Linear and Quadratic Functions at the n-th Part of a Nh—Edge

At the n-th part, which is bounded by the nodes filme [ 1°11), , we define a local co-ordinate system (see

Figure 6)

‘n 1 n n n

F310: Wan (€i1)+§i2)‘2§i ))
(11)

1

with a") = e = e [—1,+1] and Aäf") = — Based on these definitions the standard shape

functions of a h~type part of a p—element can be described. For the Nh-modes at edge e = 1 the p-edge-modes

A(§)in equation (5) changes as follows:

 

1 N K n) 12 p

= 21 Glgn)(E1(n)3§2’E.u3 + 2 ZAen . aien

e: n: =l 6:2 n=2
, fif—l

Nh-edge—modes at e = 1 remaining p-edge-modes

where K (n) is the number of nodes at the n-th part of the Nh-edge (linear case: K " =2 , quadratic case:

K(") = 3 ), are the displacements at the nodes of the n-th part and Gk are the shape functions

G2"’(El(”)‚€2‚€3)= 31E1(n))' 81( 2)‘ 81( 3) (13)

In the linear case k = 1, 2 we have

1 — „ 1 —

g1= 5M )) g2 = final“) <14)

and in the quadratic case k =1‚ 2, 3 we have

g1= —%Ei")(1-Ei")) gz = 35”)(1+Ef")) g3 =1—(Ef'0)2 (15)l

2

Analogous to the edge—modes the Nh-face-modes can be developed. For the facef= 1 (see Figure 4) with a local

N x M mesh of standard shape functions (e.g. linear or quadratic) we can write B(§)in equation (5) as follows:
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1 N M K(""") _ 6 [7-2 p—m

Bta>= 2 2 ä kzl G£""">E§"la§mle)-alts“) + fzz 22 228mm btr‘mn
f=l n=l m: = ‘ = m: n:

\__——_W__—.—J

 

(N x M) h-face-modes atf = 1 remaining p-face-modes (16)

where Gén’m) are for instance standard Lagrangian or Serendipity shape functions (see e.g. Zienkiewicz, 1977) of

the (n,m)-th part of the face f = 1, which are described in local co—ordinates E1("),_§m) (see Figure 7), 121-52”) are

mm) _

the displacements at the K (n) nodes of the (n, m)-th part of the Nh-face (e.g. linear case: K( _— 2 , quadratic

case: K (n) = 8 for Serendipity elements).

 

bilinear Nh-function

Figure 7. Bilinear Shape Function at a Nh-Face

It has to be taken into account that the shape functions given above include the linear corner functions at the

corners bounding a Nh—edge or a Nh-face and consequently this corners have to be deleted in the function

Cof equation (5). The Figure 6 and 7 demonstrate that the approximate functions at the pN-parts of the ele-

ment are piecewise defined C0 continuous functions with uncontinuous first derivatives. The calculation of the

element stiffness matrices and load vectors requires a piecewise numerical integration. For the approximation of

the geometry the standard concepts, e.g. the iso-, sub- or superparametric mapping techniques (Zienkiewicz,

1977), the blending function method (see Gordon, 1971; Szabo et a1, 1991) are suitable. We use the blending

function method to describe curved element boundaries of the p-elements and pNh—elements (see Graeff—

Weinberg, l995).

3 Error Estimation and Accuracy of the Elements

The pNh-elements have been designed for applications in a hp-adaptive finite element schema, which requires an

reliable error estimation for these elements. According to our experiences in h—adaptive techniques (see Mücke,

1992; Gabbert et a], 1995; Fels, et a1. 1992) we use the residual error estimation method originally developed by

Babuska and Rheinbold (1978), which has proved to be reliable and accurate. If we use the principal of mini-

mum potential energy

n(fi) éjaT(fi)-o(fi)dv — jüTidV — [€17.qu

V V
04

%j(Dfi)T-E -(Dü)dV — jüT-Edv — jüT-ädv (17)

v V V

H äa 5,5) — b(ü)

where a is the strain vector, 6 is the stress vector, panda are prescribed body and distributed loads respec-

tively, D is the strain displacement relation and E is the Hooke‘s matrix. If we approximate the displacement

field by admissible approximate functions ü ‚ which span the finite element space, the minimum of potential

energy equation (17)

51t(fi)= 0 with o=Dü in V and fi=fi at 0“ (18)
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gives an error e = u — ii , which can be measured in the energy norm

llellg = Mm) (19)

The solution ii calculated by minimising the potential energy gives an approximate solution of the static equilib-

rium equations and the static boundary conditions

t; + t; = J5 at rs (21)

where 95 and F5 are a subdomain and the boundary of this subdomain respectively (normally identically with

a finite element), Rs is the residuum vector of the equilibrium equation in $25 and J S is the jump between the

traction vectors ts of neighbouring regions connected by the same boundary F5 (i.e. the lack in the stress conti-

nuity condition). Following the standard strategy of Babuska et al. (1978, 1988) the error estimator ns of every

subdomain is

n; = C - h5 j Rg-deo + c-hs ijJSdF (22)

OS FS

Here h5 is a characteristic length of the subdomain (we use the cube root of £25 ), the constants C depends on the

dimension and the elastic constants and c depends on the type of the boundary (interelement boundary: 6 = 1/2 ,

boundary with prescribed loads: c = l, boundary with prescribed displacements: c = O ‚ see Mücke, 1992). The

error indicator describes the relative contribution of the subdomain to the total error. In an adaptive finite ele-

ments version an extension of the finite element space is used to correct the total error given by the sum

n2 = Zn? (23)

(S)

. . . 2 . .

to get an estimauon of the error m the energy norm "eHE . We use an extrapolation technlque (see e.g. Szabo,

1991), which gives an good error estimation also in the pre-asymptotic range. In standard elements the subdo-

mains are the elements itself. The special construction of the shape functions of the pNh—elements results in

several element subdomains (see Figure 8) and consequently in all subdomains an error estimator equation (22)

has to be calculated and added up to the element error indicator. The specification of the standard residual error

estimation technique for pNh-elements has been tested at numerous hp-adaptive finite element analyses and the

results have demonstrated the accuracy of the estimation (see Graeff—Weinberg, 1996). In the application of pNh-

elements the question of an optimal relation between the polynomial degree and the number of Nh-parts. A gen-

eral mathematical answer of the question has not been found yet.

 

Figure 8. Stress Distribution in the Subdomains of a pNh-Element

Numerical tests have given the expected result, that a one-sided increasing of either the polynomial degree p of

the shape functions in the element or the number of Nh-parts (with fixed or lower order polynomial degrees of

p=1 or p=2) at the Nh—side result in looking of the accuracy and consequently, a locking of the convergence rate.

The optimal relationship between p and N depends on the type of the problem (e. g. the regularity of the solu—
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tion). The following example demonstrates the typical behaviour. We investigate the accuracy of the pNh-

approximation of a given function

u(x1,x2) = or“ = C.(x]2+x§)°'5 (24)

over the quadrilateral region given in Figure 9. The pNh-element has one Nh-edge subdivided in N parts with

linear shape functions and complete polynomial functions of degree p at the remaining edges and the element

inside. The total number of degrees of freedoms is then

NFG=N+§p+ép2 (25)

Figure 9 demonstrates how the error in the L2 -Norm

"eiiLZ = _L7iiL2 (26)

depends on the polynomial degree p and the number linear functions at the Nh—edge. Obviously the error de-

creases rapidly with p=l to [7:4 and N=2 to N=10, but a further increase ofp or N has an insignificant influence

on the error reduction. Similar results have been achieved in several numerlcal investigations in the L -Norm as

well as in the energy-norm.

 

Figure 9. Quality of Approximation of a pNh-Element in Dependence on the

Polynomial Degree p and the Number N of Linear Functions

4 Numerical Tests and Engineering Applications

The developed 2D and 3D pNh-transition elements have been implemented in a special purpose p-version code

and the general purpose h—version finite element system COSAR. The form of the approximate functions of the

pNh-elements given above is suitable to develop general subroutines to build the stiffness, mass and load matri-

ces for 2D and 3D elements, which can be incorporated into standard finite element codes. It has been demon—

strated that under appropriate circumstances (e.g. object-oriented data and module structure) the p-version and

the pNh-elements can be simply incorporated in a h-version finite element analysis code. But the application of

the pNh-elements in real engineering problems also requires its integration into pre-processing (e.g. automatic

mesh generation) and the post-processing. In the following we present same examples, which demonstrate the

possibilities and advantages of the new element family.
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4.1 Plane Strain Problem with a Crack

As a first example a symmetric plane strain crack problem is shown in Figure 10. In Figure 11 we compare the

results of a uniform h-extension (linear shape functions) and a uniform p—extension starting from a 2 x 2 mesh

with locally restricted h—extension. In the latter variant, which is named pNh-refinement in Figure 11, only the

elements in the h—mesh region have been quartered from a 2 x 2 to a 7 x 7 subdivision. The p-mesh region re-

mains unchanged (p=2) and consequently pNh-elements have to be used with an increasing number of Nh-parts

at the coupling edges. The comparison of the three variants in Figure 11 demonstrate that suitable results can be

achieved in embedding a local h-mesh in a p-mesh.

     

p—mesh

  A _
200 h mesh

            

Figure 10. Symmetric Plane Strain Problem with Two Cracks and Initial Mesh,

with q=l‚ E=l‚ u=0.3 the Exact Solution is = 1.46844
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pNh-refinement

   

t 1 1 t
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Figure 11. Convergency Rate of the Mesh Refinement

4.2 Contact ofa Cylinder on a Elastic Foundation

The pNh-elements are especially suitable in solving contact problems within the p-version of the finite element

method. Elasticity contact problems are non-linear due to the unknown contact area and consequently an itera—

tive solution strategy is necessary to meet the static and kinematic contact conditions. A very fine linear h—

refinement over the possible contact area is required to achieve a sufficient accuracy. In the contact area we use

artificial finite bond elements with linear shape functions and normal and tangential contact stiffness (see

Buczkowski et a1, 1994; Gabbert et. al., 1993, 1994). As an example we present the solution of a classical

Hertzian problem — the contact of an elastic cylinder with an elastic infinite foundation. To demonstrate the ad-

vantages of the pNh-elements we use a usual h-refined mesh in the halfspace and a coarse p-element mesh in the
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cylinder (Figure 12), where the two elements in the contact area are pNh-elements with 15 linear parts in all. The

results shown in Figure 12 fit very good with the well known Hertzian solution.

    

En

De I I I I I I

o pNh—version

with linear _

1 contact elements

._ Hertzian solution

0.75 w *4

0.5 — —

0.25 — fl

O I : :l :4. l

 

X

0.25 0.5 0.75 l 1.25 1.5 g

  

Figure 12. Cylinder on a Elastic Foundation

4.3 Pipe Branching

As a 3D example we demonstrate the calculation of a pipe branching. Close to the branch we have a complicated

geometry and a complex three-dimensional stress state with high stress gradients. In a distance from the branch

the stress distribution can be calculated with sufficient accuracy by means of the shell theory. A very accurate

solution in the intersection region of the two pipes can be calculated with high efficiency by embedding a local

h-refined mesh at the pipe branching as demonstrated in Figure 13. For details of the calculation see Graeff—

Weinberg (1996). The example demonstrates that especially in 3D problems the pNh-elements are very suitable

for carrying out adaptive local mesh refinements in a hp finite element techniques. By means of usual h—type

finite element techniques such an effective mesh refinement is not possible.

 

Figure 13. Mesh Refinement in 3 Pipe Branching with pNh-Elements

5 Conclusions

In the paper a new family of so called pNh-transition elements has been presented, which allows a compatible

connection of differently meshed regions, especially coarse p-meshes with finite h-meshes. At one or more sides

of a pNh-element a h—discretization with a number N of piecewise defined shape functions can be generated and

at the other parts of the element any p-extension is possible. Consequently the pNh-transition elements can be

regarded as a generalisation of p-version elements with a specially defined base function. The elements pass the

patch test and can be used in an adaptive error controlled finite element scheme. The proposed pNh—elements
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have been developed for 2D and 3D problems of elasticity, implemented and tested within a special finite ele-

ment code as well as in a commercial code. A number of numerical tests and real engineering examples demon-

strate the suitability, especially if strong local mesh refinements are required (e.g. multi—scale problems, contact

problems etc.). The proposed finite element family can be seen as a contribution to the development of more

intelligent finite element technologies in the future.

Acknowledgement: The work has been supported by the German Research Foundation (DFG). This support is

gratefully acknowledged.

References

l. Babuska, I.; Rheinbold, C.: A-posteriori Error Estimates for the Finite Element Method, Int. J. Num. Meth.

Engng., 12 (1978), pp. 1597-1615.

2. Babuska, I.: The p- and hp-version of the Finite Element Method — State of the Art, in R. G. Voigt, D. L.

Dwoyer, M. Y. Hussaini (eds), Finite Elements — Theory and Application, Springer, (1988).

3. Buszkowski, R.; Kleiber, M.; Gabbert, U.: On Linear and Higher Order Standard Finite Elements for 3D-

Nonlinear Contact Problems, Computers & Structures, 53, No. 4, (1994), pp. 817-823.

4. Cavendish, J. C.; Hall, C. A.: A New Class of Transition Blended Finite Elements for the Analysis of Solid

Structures, Int. J. Num. Meth. Engng., 20 (1984), pp. 241-253.

5. Fish: The s—version of the Finite Element Method, Computers & Structures, 43 (1992), pp. 539-547.

6. FEMCOS: Forschungsgesellschaft für Technische Mechanik mbH, Universelles FEM—System COSAR —

Nutzerhandbuch, 2. Auflage, VECTOR Moritz & Pröbsting OHG, Hamburg, (1992).

7. Fels, D.; Gabbert, U.; Mücke, R.: Error Controlled Adaptive Mesh Refinement in 2D and 3D Finite Element

Analysis, Proc. of the XXI. International Finite Element Congress FEM '92, November 16 and 17, Baden

Baden, (1992).

8. Gabbert, U.; Graeff-Weinberg, K.: pNh—Elemente für die Lösung nichtlinearer Kontaktprobleme in der p-

Version der FEM, Proc. of the XXII. International Finite Element Congress FEM '93, Baden Baden, Nov.

15 and 16, (1993).

9. Gabbert, U.; Graeff-Weinberg, K: Eine pNh-Elementformulierung für die Kontaktanalyse, ZAMM 74,

issue 4, (1994), T195-Tl97.

10. Gabbert, U.; Zehn, M.: Adaptive Remeshing Based on Error Estimations — Foundations, Implementation

and Application, Proc. of NAFEMS 5th International Conference on Reliability of Finite Element Methods

for Engineering Applications. Amsterdam, 10-12 May, (1995), pp. 1-10.

11. Gabbert, U.; Wahl, F.; Zehn, M.: Improved Results in Structural Dynamic Calculations by Linking Finite

Element Analysis (FEA) and Experimental Modal Analysis (EMA), Proc. of the ASME Design Engineer-

ing/Technical Conferences, DE-Vol. 84-3, Boston, (1995), pp. 1321-1328.

12. Gordon, W. J .: Blending Function Method of Bivariate Interpolation and Approximation, SIAM J. Num.

Meth. Anal. 8, (1971), 158-177.

13. Graeff—Weinberg, K.: Ein Finite-Element-Konzept zur lokalen Netzverdichtung und seine Anwendung auf

Koppel- und Kontaktprobleme, Dissertation, Universität Magdeburg, (1996).

14. Mücke, R.: Beitrag zur Berechnung linearer Elastizitätsprobleme mit h-adaptiven Finite-Element-Verfahren,

Dissertation, Universität Magdeburg, (1992).

15. Jensen, S.: Computational Aspect of Adaptive Dimensional Reduction for Nonlinear boundary value Prob-

lems, in J. Robinson (Ed.): Finite Element Methods in the Desgn. Process, Robinson & Associates, Oke—

hampton, (1990).

125



16.

17.

18.

19.

20.

21.

22.

23.

24.

Mottershead, J. E.; Friswell, M.: Model updating in Structural Dynamics: A survey, J. of Sound and Vibra-

tion 167 (2), (1993), 347-375.

Oden, J. T.; Demkowicz, L.; Rachowicz, W.; Hardy, 0.: Toward a Universal h-p Adaptive Finite Element

Strategy, Part 1: Constraint Approximation and Data Structure, Part 2: A Posteriori Error Estimation, Part 3:

Design of hp-Meshes, Computer Meth. in Appl. Mech. and Engn. 77 (1989), 79—112, 113-180, 181-212.

Stein, E.; Ohnimus, S.: Dimensionsadaptivität bei Finite—Element-Berechnungen von Stäben und Platten,

ZAMM, 73, (1993), T673-Z677.

Stein, E.; Ohnimus, 8.: Expansion Method for the Integrated Solution and Model Adaptivity within the FE—

Analysis of Plates and Shells, in NE. Wiberg (Ed.): Advances in Finite Element Technology, CIMNE Bar-

celona, (1995).

Szabo, B. A.; Babuska, I.: Finite-Element-Analysis, John Wiley & Sons, (1991).

Wiberg, N.-E.: Superconvergent Patch Recovery of Finite Element Solution and a Posteriori Error Estimate,

Commun. Num. Meth. Engng., 10, (1994), pp. 313-320.

Zienkiewicz, O. C.; Zhu, J. Z.: A Simple Error Estimator and Adaptive Procedure for Practical Engineering

Analysis. Int. J. Num. Meth. Engng., 24, (1987), pp. 337-357.

Zienkiewicz, O. C.; Zhu, J. Z.: The Superconvergent Patch Recovery and a Posteriori Error Estimators. Part

I: The Recovery Technique, Part II: Error Estimates and Adaptivity, Int. J. Num. Meth. Engng., 33, (1992),

pp. 1331-1382.

Zienkiewicz, O. C.: The Finite Element Method, McGraw-Hill Book Company (UK), (1977).

 

Address: Prof. Dr.-Ing. Ulrich Gabbert and Dr.—Ing. Kerstin Graeff—Weinberg, Institut für Mechanik, Otto-von-

Guericke-Universit'at Magdeburg, Universitätsplatz 2, D-39106 Magdeburg

126


