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Theoretical and Numerical Studies of the Shell Equations of

Bauer, Reiss and Keller, Part II: Numerical Computations

M. Hermann, D. Kaiser, M. Schröder

We study the solution field M of a parameter-dependent nonlinear two-point boundary value problem

suggested by Bauer et al. (1970). This problem models the buckling of a thin-walled spherical shell

under a uniform axisymmetric external static pressure. In Part I (see Hermann et al., 1999) we have

developed a mathematical theory which describes M. In Part II of this work, the theoretical results are

used to efiiciently compute interesting parts of M with numerical standard techniques.

1 Introduction

Let us consider the following parameter-dependent nonlinear two—point boundary value problem (BVP)

which describes the buckling behavior of a thin-walled spherical shell under a uniform axisymmetric

external static pressure

2110) = (V ~ 1) €0t(t)y1(t) + 212(75) + [k C0t2(t) - Aly4(t) + €0t(t)y2(t)y4(t)

1/20?) z 11300 (1)

2/305) = [cot2(t) — v1y2(t) — cot(t)y3(t) — 114(25) — 0.5 comm/2U)

11510) = ßy1(t) - vc0t(t)y4(t) ' 0 < t < 7r

y2(0) = 214(0) = y2(7r) = 1/40?) = 0 (2)

where yl (t) = m(t), y2(t) = q(t), y3(t) : s(t) are proportional to the radial bending moment, the

transversal shear and the circumferential membrane stress, respectively. The component y4 (t) is pro-

portional to the angle of rotation of a tangent to a meridian and 1/ is Poisson’s ratio. Let the radii of

the inner and outer surface of the spherical shell be given by r = R 2F h, where R is the radius of the

midsurface of the shell and 2h is the uniform thickness. The parameter /\ and the constants 19,9 are

defined by

_pR _1 h2 . _1—1/2

’\=4Eh k=3(‘) ß: k

 

where E is Young’s modulus and p is a uniform compressive load. In the sequel we refer to /\ as the load.

In Part I of this paper (see Hermann, Kaiser and Schröder, 1999) we developed a mathematical theory

which describes the solution field M of equations (1) and We wrote the BVP as the second order

problem

w’1’(t) = — c0t(t):1c’1 (t) + [cot2(t) — 1/]m1(t) — m2(t) — 0.5 cot(t)x§(t) 0 < t < 7r

= — cot(t):c'2(t) + [cot2(t) + 1/]m2(t) + fl[a:1(t) — A332 (t) + cot(t);r1(t)x2(t)] (3)

201(0) — m2(0) = 331(7r) = $207) 2 0 (4)

and transformed equations (3) and (4) into the operator equation

T(:r,)\)=0 T:XxR—>Y (5)

where X and Y are appropriate Banach spaces.
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In Part II we show how this theory and appropriate numerical methods can be applied to compute

interesting parts of M. Our computations were based on 1/ = 0.32 and k = 10—5. The interval IA for

the external load A was set as I‚\ E [0.005,0.0077] because the primary bifurcation points 20 E (0, A0)

with the ten smallest A—components are in X X IA.

The organization of Part II is as follows: In Section 2, problem (3),(4) is transformed into a first

order BVP on [0,7r/ 2] which can be solved by numerical standard software immediately. Moreover,

relations describing the geometry of the deformed shells are given. In Section 3 we compute the simple

bifurcation points and show how the jumping onto nontrivial solution branches can be realized. In

Section 4, bifurcation diagrams of symmetric and nonsymmetric solutions are presented. The existence

of secondary bifurcation points is proved numerically. Finally, in Section 5 we plot some deformed shells.

2 Numerical Approach

To determine an isolated solution 5: E X of equation (5) for a fixed value Ä E IA we used the multiple

shooting code RWPM (see e.g. Hermann and Kaiser, 1993,1994,1995) as the standard solver. Moreover,

the software package RWPKV (see e.g. Hermann and Ullrich, 1992) was applied to trace the solution

curves {($(8), /\(€)) z Isl S so} numerically. Both computer programs require the formulation of the

BVP to be solved as a system ofN first order differential equations and N two-point boundary conditions

6'“) = (103, (WM) 0 S t S b T(C(a)‚ C(b)) = 0 (6)

Therefore, we transformed equation (5) into a BVP 0f the form (6) and removed the regular singularities

of the differential equations as follows. Since the equivariance of the operator T (see Part I, equations

(10) and (11)) implies T(a:,)\)(7r ~ t) : —SyT(:r,/\)(t) = ——T(SX;r,/\)(t), the equation T(;r,/\)(t) = 0,

t e (0, 7r), can be split into the following two equations

T(z‚)\)(t) = o T(Sxx„\)(t) = o o < t g 7r/2 x e X (7)

Defining the vector-valued function C(t) E (410:), . . . ‚ (8(25))T by

€10) E w1(t)/t (2(t) E 56'105) €30) E 172(0/ t C40?) E $505)

(5(t) E (SX$)1(t)/t (GU) E (wa)’1(t) Mt) E (SXJI)2(t)/t (80?) E (wa)'2(t) (8)

and using the splitting cot(t) = 1/25 — cot(t), cot(t) = 0(t) for t ——> 0, we transformed the equations (7)

into the BVP of dimension N=8:

1

—M , ;/\ 71'at): , C(t)+g(t at) > 0<ts /2 (9)

O t=0

M<(0)=0 <.<7r/2>=—<.+4<vr/2),i=1.3 <j<vr/2)=cj+4<vr/2>,j=2.4 (10)

where

Mzdiag(MlaMlaM17M1) M1 = ( *1 _1)

9i(t‚C(t);/\) = 0 i= 1,3‚5‚7

g2(t‚ C(t); /\) = - [266t(t) - t(06t2(t) - V)]€1(t) + C6t(t)42 (t) ~ t€3(t) - éll - t05t(t)]C32(t)

94(t; C(t); Ä) = — [206'509 — 15(05‘02 (t) + V)lC3(t) + €5t(t)C4(t) (11)

+ 5th1“) — ÄCBÜ) + l1 — t05t(t)l§1(t)C3(t)}

96(t: C(15); A) = — [2c6t(t) — 150159“) — V)lC5(t) + C5t(t)C6(t) — KW?) — éll — tC5t(t)lC3(t)

98(ta C(t); Ä) = * [206’000 " t(05t2(t) + V)]C7(t) + C6t(t)Cs(t)

+ ßt{C5(t) — ÄGU) + l1 — t05t(t)lC5(t)C7(t)}
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REMARK 1 The entry C’(0) = O in formula (9) has been obtained by the following argument. Since

c6t(t) = 0(t) as t —> 0 and MC(0) = 0, it follows

('(0) = lim ca) = lim <M———C(t)_«m +g
t—)0+ t——>0+ t

(t, at); a) = Mao)

The eigenvalues of the matrix M are —2 and 0 (both with the multiplicity 4). Thus, the matrix I — M

is nonsingular and we compute C(O) : 0.

REMARK 2 For the determination of the symmetric solutions (ms, A) 6 X5 >< R of equation (5) it is not

necessary to use the whole system (9),(10). Since the relation SXxs : ms implies that the two equations

in (7) are identical, only the first one has to be solved. This means that the transformed equations (9)

can be reduced to

Ci“) C105) 9105: C105): - - - ‚ C4“); Ä)

. 2%(1113): e
(1(75) (4(15) 9405: (1(75), - - - ‚ C405); Ä)

The boundary conditions at t = 0 follow immediately from equations (10) whereas those at t = 7r/ 2 can

be obtained from the fact that ass is an odd function:

(1(0) = (2(0) (3(0) = (4(0) C1 (7r/2) = (3(7r/2) = 0 (13)

Obviously, the amount of computational work which is necessary to solve this BVP of dimension N : 4

is much smaller than that one to solve the problem (9),(10) of dimension N = 8.

In order to be able to visualize the computed deformed shells some further geometrical quantities are

required (see also Bauer et al., 1970). Let us consider an arc (R sin(t), 0, Rcos(t)) E R3, t e [0, 7r], of the

midsurface of the sphere which is deformed by the load A to

(R(t) sin(t + u(t)), 0, R(t) cos(t + u(t))) t e [0, 71'] (14)

where R(t) E R[1 — W0 — and W0 E (1 — 1/))\. The quantities RWO and Rw(t) are radial

displacements. Wo represents the uniformly contracted or unbuckled state whereas w(t) describes the

buckling of the shell. Suppose (x, A) is a solution of equation (5). Then the functions u and w satisfy

u'(t) = cot(t)u(t) + (1 + 1/)[cot(t)a:1(t) — m'1 — 0.5mg(t)

‚ (15)
w t = 2:2(t — u(t)

0 = “(0) = “(W/2) = WT) w(7V2) = —-76i(7T/2) (16)

Note that the condition for w(7r /2) in equation (16) has been obtained by adding the equations (A.19e)

given in the article of Bauer et al. (1970), p. 567.

Now, the shape of the deformed shell can be computed as follows. The functions u and w determined

from equations (15) and (16) are substituted into equation (14). Then this are is rotated around the

vertical axis which is spanned by the vector (0,0, 1). This yields the midsurface of the deformed shell.

If (w, A) is a symmetric solution of equation (5) then u and w are odd and even, respectively. Thus, a

symmetric solution leads to a shell which is symmetrically deformed with respect to the equatorial plane.

3 Trivial Solution Curve

Consider the trivial solution curve Cm, C M. In engineering it is usual to denote the A—component of a

singular point as a critical value. To determine the critical values AM E I‚\ listed in Table 1 we used the

explicit formula given in Part I, Theorem 3(1). The real numbers 7,, and the vectors on E R2 are defined

by 7,, E ß/(pn — 1 — 1/) + 1 + 1/, and A(A0„)v„ 2 one”, on 75 0, respectively. It follows from Part I,

Theorem 3(3) that dimN(Tz(zo,,)) : 2 if and only if there exists an integer m with pm E m(m+1) = 7".

Thus, 7,, is an indicator for the dimension of this null Space. Looking at Table 1 we observe 7,, ¢ N, and

consequently dim N(Tm(z0n)) = 1. The entries in the fourth column of Table 1 are justified by Part I,

Theorem 2. Part I, Theorem 5 implies that all singular points 20,, given in Table 1 are simple bifurcation

points. In other words, for each 20,, there is exactly one curve Cn of nontrivial solutions which branches

Off at 20”.
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71 A07, 7,, basis of N(Tw(0‚ /\0„))

17 0006683647223 2959241749 (P117 O COS)U17 E Xa

16 0006717126563 3329292803 (P116 o cos)1116 6 X8

18 0006737890528 264.7930539 (P118 o cos)1113 e X,

15 0006855931104 3773883761 (P115 0 COS)’U15 E Xa

19 0.006866687913 2383539073 (P119 0 C0S)U19 E Xa

20 0007060027591 2157080768 (P210 0 COS)’U20 6 X8

14 0.007124022503 431.4522599 (13,14 o cos)1)14 e X,

21 0.007310187241 196.1624069 (12,11 0 cos)v21 e X,

13 0007554700365 4981099048 (P113 O COS)U13 E Xa

22 0007611132736 1791752746 (P212 o cosh/22 e X,

      

Table 1. Simple Bifurcation Points 20,, E (0, A0”)

To jump onto Cm i.e., to compute a point on the curve of nontrivial solutions we used a sophisticated

trial and error procedure. The idea was to parametrize the curve Cn in the form 53(5) = 5900,, + 111(5),

A(5) 2 A0,, +7(5), where N(Tw(20„)) = span {goon}, 111(5) belongs to the complement of N(Tx(zo,,)) in X

and satisfies 111(5) = 0(52), 7(5) 6 IR with 7(5) 2 0(5). Using the starting point zm) E (5900”, A0" + 7),

where 15] and |7[ are small, we tried to compute a solution of equation (5) with the code RWPM. Since

RWPM requires a system of the form (9),(10) it was necessary to transform 2(0) according to equation

(8). By varying 5 and 7 we succeeded in jumping onto 0”. Then, we applied the code RWPKV for

tracing this curve.

With the theoretical results presented in Part I the computational work could be reduced as follows:

Let n be odd (cf. Table 1). If 20,, is removed from the curve Cn two solution branches F1 and F2 result.

By Part 1, Theorem 9(3) we know that all elements of F1 are nonsymmetric. Therefore, it was sufficient

to trace the branch F1 only. After that, we determined the elements (E,A) E F2 from the elements

(at, A) E F1 by the formula it 2 8X96.

Now, let n be even. Looking at Table 1 we see that the one-dimensional null space N(T„„ (2%)) is a subset

of Xs. By Part 1, Theorem 9(1) we know that there is a sufficiently small neighbourhood U C X x R of

20,, such that Cn n U C Xs x 1R. As before, if 20” is removed from the curve Cn two solution branches

F1 and F2 result. We have traced 1‘1 and F2 on the basis of the BVP (12),(13). The use of this BVP

is justified by Part 1, Theorem 10 as long as we do not arrive at a singular point. Otherwise Part 1,

Theorem 9 gives the information how to continue.

4 Secondary Solution Curves

In the first bifurcation diagram of the symmetric solutions (see Figure 1) we represent a solution (ms, A)

of equation (5) by the point (A, E(ms, The quantity E(av7 A) is defined by

3 6(x7’\) .3
210E(a:,A) E

where

(7’2 + 1/ cot(t)a:2)
e($, A) E /07r + (cot2(t) —— 1026? + ß 2 + k cot2(t)$§ — 4Aw} sin(t) dt (17)

This integral is proportional to the difference between the potential energy of a buckled solution (.23, A)

and the unbuckled solution (0, A) (see Bauer et al., 1970).

74



              

4

Zoom I 95 Zoom II 55.. Zoom III

3

2 9 5535

' 8.5 553

°W
55.25

E7 5.75 58 5 72 5.74 5 75 5.75 5.|ZH 6.129 6 |3 6.131 6.132

60 l l I l l

50 -

Lu 4o _

E

S
2.: 30 —

o
c
3
“—

$ 20
_

cn
L

“c’
Lu 10 -

O

_1 o l 1 l I l

5 5.5 6 6.5 7 7.5 8

M103

Figure 1. Bifurcation Diagram: Symmetric Solutions of Equation (5)

(o bifurcation points, * turning points)

During the pathfollowing of curves of symmetric solutions (n even) we have detected a number of turn—

ing points which are given in Table 2. The numerical techniques for the detection and computation of

turning points implemented in RWPKV are described in the paper of Hermann and Ullrich (1992).

       

No A0 >|< 103 3161(0) * 103 3362(0) E

1 6.7256022 0.3345044 0.0343114 —0.287

2 6.6873969 2.2078041 0.2356827 3.928

3 6.8100323 1.1683510 0.2990327 —0.892

4 5.2804210 5.1352283 —4.0172601 16.169

5 7.0711590 0.2834687 0.1484373 —0.226

6 6.6534707 —2.1610009 1.0663462 11.437

7 6.7215753 —5.0560232 —1.3052524 9.413

8 6.7174067 —5.2146032 —1.8304447 9.539

9 6.7732333 —4.1290496 —2.5178255 7.980

10 6.7607884 -—4.6418851 —1.5797841 8.303

11 7.2822908 1.5762264 0.2966017 —1.262

12 6.5807714 2.9035722 ~0.0308069 19.242

13 6.9156469 9.41046—4 —0.9309247 5.278

14 6.4991517 3.8449160 —4.3006411 21.883

15 7.6601766 0.9855033 0.4261658 —0.743

16 6.1279061 —4.3589349 0.9343079 55.399

17 6.1317663 —5.8035606 0.3040023 55.275

18 6.1312388 —6.3622172 -—0.0092440 55.292

  
Table 2. Symmetric Case: Turning Points 20 E (330, A0)
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In Figure 2 the computed symmetric solutions are marked Witleots in order to Visualize the stepsize

strategy used in the pathfollowing code RWPKV. Moreover, in this picture we have used the functional

instead of E. By this change another insight into the structure of the solution field is obtained.
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Figure 2. Bifurcation Diagram: Symmetric Solutions of Equation (5)

Since e(m,/\) = 6(Sxm,)\)‚ the functional (17) is not suitable to represent nonsymmetric solutions in a

bifurcation diagram. Therefore we have only plotted x’l (0) versus A in case of the nonsymmetric solutions

(see Figure 3).

      

X*‘|03

Figure 3. Bifurcation Diagram: Nonsymmetric Solutions of Equation (5)

To gain a better insight into the structure of the solution field the curves of nonsymmetric solutions

which pass through the bifurcation points (0, AM), n = 13,15‚17,19‚21‚ are drawn in Figure 4(a)—4( )
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separately. Moreover a curve which passes through a secondary bifurcation point is drawn in Figure 4(f).
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Figure 4. Curves of Nonsymmetric Solutions of Equation (5)

Note: 0 — turning point7 o — bifurcation point

In Table 3 the turning points of the curves of nonsymmetric solutions drawn in Figure 4 are given. They

have been determined in the same way as the turning points of the curves of symmetric solutions.

                   

$11641“ 10*103 351(0)*103 652(0) 309.103 561(0)*103 532(0)

(a) | 6.5046593 3.7920602 —4.3823691 | 1

(b) 6.8588862 0.3511653 0.0526280 6.8588862 ~0.2847266 ——0.0316046

6.5753915 4.3769640 —1.5335074 6.5753915 1.9929949 0.9526770

6.6981940 0.1737112 —-0.5577584 6.6981940 1.3595862 0.1347339

5.2303332 5.1340731 —4.0167780 5.2303332 5.333064 3.221454

6.5396708 —0.3915986 —4.0493111 6.5396708 —2.9800398 ——0.1004188

5.2803827 5.1340741 —4.0167778 5.2803827 —2.1331971 —1.0566922

6.7111445 4.5533239 4.7491602

L (c) l no turning points with A E I‚\ I

((1) 6.8718367 0.7839775 0.2181021 6.8718367 —0.6474939 —0.2473561

6.6745882 2.5563482 0.2609639 6.6745882 —2.3458582 -—2.8146447

6.6973295 2.5674983 0.3234533 6.6973295 —2.0401186 —3.4150051

5.2804352 5.1370983 —4.0179866

(e) 7.3377969 1.1712013 0.4100209 7.3377969 4.4079664 4.3733673

6.5541909 3.7167771 0.3988890 6.5541909 1.7947468 —3.4242751

6.7574505 0.0236994 —1.8623094

(f) 6.3239372 4.9090793 4.1205232 6.3239372 —2.3575320 4.0511735

6.6562690 —4.7021356 4.7175737 6.6562690 1.2117335 1.5324341

6.6855269 —0.1499650 1.3752581

  

Table 3. Nonsymmetric Case: Turning Points 20 E (wo, A0)

In order to demonstrate the existence of secondary bifurcation points of equation (5) we have executed

the pathfollowing process in the grey shaded area of Figure 2 with the large system (9) to (11) instead

of the reduced system (12),(13). The result is represented in Figure 5.
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Figure 5. Secondary Bifurcation Point Figure 6. Part of C; = C8 with Two

of Equation (5) Secondary Bifurcation Points

We see that the point 2 = (i, Ä) 6 CS g Xs x R is a candidate for a secondary bifurcation point. Let us

assume that the curve of nonsymmetric solutions Cmm intersects Cs at 2. Part I, Theorem 9(1) implies

the existence of an antisymmetric element (pa 9€ 0 such that Tm(2)‘Pa = 0. We have tried to compute

this singularity with the well-known extended system (see e.g. Wallisch and Hermann, 1987)

T(ws‚ /\) = 0 Tm(99s‚ /\)<Pa = Ü 902% = 1 (18)

Note that the first equation of (18) corresponds to the system (12),(13). Because of the symmetry of

ms, the antisymmetry of 90a and the equivariance of T it is sufiicient to solve [Tm(xs‚ /\)g0a](t) = 0 on the

smaller interval (0, 7r/ 2]. We transformed (pa analogously to ms (see equations (8)) and obtained a system

of differential equations which is of the form (12), with modified functions g). Then, we determined the

corresponding boundary conditions at t = 7r/2 from the relation (‚011(77/2) = 0. The nonlinear two-

point boundary value problem which results from equations (18) by these manipulations consists of 10

differential equations (including the trivial differential equation X : 0) and 10 boundary conditions.

After 18 iterations the code RWPM produced the solution

(23/1 (0), :E'2 (0), Ä) = (~0.004478227, —1.258771‚ 0006770837)

From the pathfollowing process for Cs we know that 2 cannot be a turning point of 0,. Thus 2 is indeed

a secondary bifurcation point.

Part I, Theorem 11 can also be applied to determine secondary bifurcation points. In the grey shaded

area of Figure 4 we find the situation which is assumed in this theorem. Let us denote the marked point

by 5 E (i,:\). Then we have 2 = (m(80),/\(50)) 6 XS X R. Part 1, Theorem 11 states that there is an

element (pa E X, \ {0} such that Tm(2)<pa : 0. We determined (2,9%) by the extended system (18)

restricted to t E (0, 7r/2] and obtained

(6’, (0), 63(0), Ä) = (—1.499650 e—4, 1.375258, 0.006685527)

Then we assumed dimN(Tm(Z)) z 1, i.e., N(Tz(2)) = span {apa}. Consequently, Z is an isolated solution

of TIXSX]R (23) = 0. The implicit function theorem yields a uniquely determined curve of symmetric

solutions

as = {20) = (mom — Ä): IAI < A0} z(0> = 2

Starting in ä we applied the pathfollowing procedure to the reduced system for symmetric solutions

(12),(13), first into the positive A—direction then into the negative one. In this way we determined C;

(see Figure 6). Thus, there are two branches of nonsymmetric solutions which branch off from CNS at ä,

i.e., 2 is a secondary bifurcation point. Obviously, C; = C5.
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5 Examples of Deformed Shells

Finally, let us present some examples of deformed shells. We computed the arc (14) at 201 equidistributed

points ti = 2'7r/200, i = 0,. . . ‚200. Then, this discretized object was reproduced for each aj : j7T/200,

j = 1,. ‚.‚400‚ where aj denotes the angle of rotation around the vertical axis. By this strategy we

obtained a discretization of the midsurface of the shell which was interpolated and drawn with the

mathematical software package MATLAB (see e.g. Part—Enander et al., 1996).

Let 21 and 22 be a pair of nonsymmetric solutions of equation (5) and 51, 52 the corresponding deformed

shells. In Figure 7 (d) we have drawn the left part of 51 and the right part of 52. By this procedure the

nonsymmetry of the deformed shell can be better recognized.

The symmetric deformed shells (a)-(c) of Figure 7 correspond to solutions (:17, A) which are plotted in

Figure 1. The two nonsymmetric deformed shells shown in picture (01) can be seen in Figure 4(e) (here,

w’1(0) : 1.6989288 e—3, (SXx)’1(O) = 3.6697240 e~3).

 
Figure 7. Examples for Deformed Shells: (a)—(c) Symmetric Solutions7 (d) Representation

of a Pair of Nonsymmetric Solutions
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