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Stability of Cooperating Manipulators with Hybrid Position/Force

Control and Time Delay

I. Zeidis, A. Schneider

The mathematical model and stability of motion of two cooperating manipulators is considered. The high order

equations of this model make the mathematical analysis ofthe stability more difiicult.

By using a symmetrical control scheme with time delay in a feedback loop, we have obtained the domains of

stability and non-stability for such parameters of the system as coefficients of gains, stiflness offorce sensors,

time delay in the control loop, and mass of load.

1 Introduction

The problems of coordinated control of a few manipulators, which are coupled through an external object, ac-

quire actual meaning in accordance with the appearance of new tasks in the area of automation of technological

processes.

Some examples of such possible tasks include:

1. The transfer of a bulky or heavy object, when the power handling capacity of one manipulator is not sufficient,

or when the grip can not provide reliable handling of the object.

2. Manipulation with objects. Such tasks include mounting and assembling operations, and machining operations.

For example each arm holds one of the coupled parts, or one arm holds the tool and the second holds the part

(Tao et al., 1990; Dauchez and Delebarre, 1991; Kosuge and Ishikawa, 1994).

The technological operation present a special interest, which realises the manipulation of non—rigid objects (such

as film materials, thin metal sheet and so on), their expansion, bending, and attachment to another object with

defined tension (Zheng and Chen, 1994; Bouffard et al.,1991; Von Albrichsfeld, 1996).

In all of these cases for co—ordinated movement of the coupled manipulators, it is necessary to control and correct

their movements in accordance with information about reaction forces acting on the system. It is possible to

measure these forces with the force sensors mounted between manipulators and the objects they hold, and to use

their signals in the control loop.

By synthesis of control laws it is possible to use various control schemes based on measurements of the reaction

forces. The most widespread schemes are position/force (Raibert and Craig, 1981) and impedance (Whitney,

1977) control laws.

Correction of manipulator movement by position/force control is done with the help of feedback on position and

force. A hybrid position/force (Uchiyama and Dauchez, 1988; Kim and Zheng, 1989; Pujas et al., 1995; Per-

dereua and Drouin, 1996) and parallel (Hayati et al., 1998) systems of control are used.

With impedance control, the velocity of manipulator movement is proportional to the force error. Such methods

of control are used frequently, when one of the manipulators (leading) is controlled only by the position, and

second one only by force.

The most widespread case of consideration of dynamic movement is the movement of two manipulators con-

nected through an elastic or lumped-elastic element, whose mass is negligible. In such cases, as a rule, the time

delay in the control system is not taken into account, reducing the order of the characteristic equation dawn to

four.

In Kim and Zheng (1989) a system of two master-slave manipulators is considered, coupled with each other

through a lumped—elastic force sensor by two types of control, positioning control and positioning/force control,

and without time delay in the control system. Applying the direct Lyapunov method it is shown that the system is

stable in both cases.

In Kazerooni and Tsay (1988), Kopf (1989), Kokkinis (1989), Wen and KreutZ-Delgado (1992) more general

formulations of the problem are shown, but the influence of the time delay on the system’s stability is not consid-

ered.

The present paper considers not only the cooperating manipulators, but also the load by linear positioning/force

laws of control. The model takes into account the time delay in the control loop. The symmetrical scheme of

control is investigated, in which control laws of both manipulators are similar. This condition allows us to reduce
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the characteristic polynomial of eighth order to a multiplication of corresponding polynomials of third and fifth

orders. In this case it is possible to receive areas of stability and non-stability of the dynamic system depending

on its parameters, such as coefficients of gains, stiffness of force sensors, time delay in the control loop, and mass

of load.

2 Model of Connected Manipulators

The researches are carried out on a gantry type configuration of manipulator with two arms (Gorinevsky et al.,

1997). It consists of a rigid box frame mounted on a base, and two arms, identical in kinematics and design (Fig-

ure 1(a)). The frame height is 0.95 In, its horizontal dimensions are 1.4 X 0.76 m. The manipulator arm is moved

along the horizontal axes by a carriage riding on the bridge. The first degree of freedom corresponds to the linear

motion of the bridge riding on runway rails mounted on the manipulator frame along one of the horizontal axes.

Another set of runways is installed on the bridge normal to this axis. The second degree of freedom corresponds

to the linear motion along another horizontal axes of the carriage carrying the manipulator arm of length 0.7 m in

the runways on the bridge. The vertical motion of the manipulatorarm must correspond to the third degree of

freedom. Drive reduction gears of the translational degrees of freedom are connected through cylindrical pinions

with racks mounted on the runways.

We will study the one-dimensional, translational motion of two manipulators which hold a load (Figure 1). Each

manipulator consists of an arm (1) with mass, m1 (m2), a gear train (DC motor (2) and reductor (3)). The output

power gear (4) is connected to the rack attached to the arm. The manipulator arm is moved along the horizontal

axes 0X .

                

x X X; x

(a) (b)

Figure 1. General View of the Research Manipulator (a) and Schematics for the

One-dimensional Motion of the Manipulators (b)

A single-component force sensor (5) is mounted to the lower end of each manipulator arm to measure the hori—

zontal force component acting on it.

The force sensor ends have plates, which hold an undeformable object with mass M 0 . We will neglect the mo-

ments produced by the forces, which act from side of the manipulator relative to the centre of gravity of the load.

We will model a single-component force sensor by a massless lumped elastic element.

2.1 Mathematical Model

By x1, x2 we denote the coordinates of the point where the sensor is mounted on the appropriate manipulator and

by x the coordinate of the centre of gravity of the load. We use the Lagrange second order equations to derive

the equations of motion for the system:
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i 3_T _9_T=QV v:l,....,n (1)

dl öq'v aqv

where T—kinetic energy of the system, QV — generalised forces, qV —Lagrange coordinates, n—number of

degrees of freedom.

We take Cartesian coordinates x, x1 ,x2 for the Lagrange coordinates. Thus the kinetic energy of the system can

be expressed as:

T2%(mlxfi+m2x§+M0x2+JG1¢f+JGZ¢%)

where (p,- (z' =1,2) - is a rotational angle of the motor rotor, J GI. —is the moment of inertia of the rotor of each

motor.

The linear displacement x1 (x2) of the manipulator arm is related to the rotational angle (p of the motor as:

xi = (ri / ji )(pi

where r,- is a radius of the outer pinion in the gear train, and ji is the gear train reduction ratio.

Taking into consideration the above equation, the expression for the kinetic energy (2) can be rewritten in the

form:

J J

T=%(mle+m2x§+M0x2+—G2‘ xfi+_022x3) (3)

Pi P2

where p,- = ri /j‚- ‚(i 21,2).

The generalised forces QV may be presented as:

8U BR
Q=—+—+X v=1,2,3

V va ax, V

The force function reads

2 2

U=—i2k1[ x—a—(x1+lol)] —%k2[ xz—IOZ-(X+a)] (4)

where ki is the stiffness of each force sensor, 2 a is the size of the load, lot. is the length of the elastic element

of the force sensor in unloaded state.

The energy dissipation in the system may be expressed by the Rayleigh dissipation function

R=-% ld21i3+d22i§+b1(k—X1)2+b2(X2—X)2 ] (5)

' ' CZ' Mpi —Mni . . _

where the pos1t1ve constants dZi = ——2'—‚ C2,. =———_ for a spec1f1c motor may be calculated by us1ng the

pi (Pi

values for the starting torque Mpi, nominal voltage Ui , nominal torque M m- , nominal angular velocity ("pi , and

bi is a coefficient of the force sensor viscosity.

The generalised forces X1 = dliUi are proportional to the voltage Ui applied to each of the motors. They per—

form work along the possible displacement öxi (i = 1,2) .
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C? M

Here d1i=l,C„ = U

I ni

By substituting equations (3), (4) and (5) into equation (1) we obtain the equation system:

ni

 

M055+(b1+b2))'c+(k1+k2)x—b1)rl—k]xl—b2,r2—k2x2—k]ll+k212 =0

M1561 +(d21+b1 )jcl +k1x1 —b1)'c—k1x+kll] —d„UI =0 (6)

M2562 +(a‚'22+b2)jc2 +k2x2 —b2x—k2x~k212 —d12U2 =0

where Mi=mi 2 2, ‚-

To study the dynamics of such a system we need the control laws for the voltage, U1 and U2 applied to the

motors.

2.2 Control Laws

The general relation, including the signals of feedback of position, velocity, and force, and the delay in feedback

loop may be expressed in the form:

U, (t+T,~ )= —kp,-(xi (t)—xp,-)—kch,- (t)—kFi(F,- (t)-—Fp,~) i = l, 2 (7)

where k ppkwkpi 2 O are coefficients of feedback about position, velocity, and force for each manipulator, x1“-

is the programmed position of the manipulator, F„i are programmed values of forces acting from side of the

manipulator on the load, whereas Fp] = —F1,2 = I, 2 O , T,- is the time delay in each feedback loop.

From now on we consider the position of the manipulator and the load related to the coordinate system as shown

in Figure 1.

To linearize the equations (6) we express U (t +T) in the form of a series in T

U(t+T)=U(t)+TU(t)+%T2Ü(t)+„„ (8)

We consider only the linear part of equation (8), so

U(t +T) = U(t) +TU(t) (9)

The considered manipulators are mechanically connected to each other through the lumped elastic elements of

the corresponding sensors and through the load, and that is why the programmed values of positions xp1 and xp2

corresponding to the equation system (6) must be related by the equation:

xp2 —xp1=l1 +l2 —(Ax1 +Ax2)

Here ll +l2 is the distance between manipulators in the steady state and in case the elastic elements of force

sensors are not deformed, Ax, is the deformation of each sensor (i = 1,2 ). The values of Axi are restricted by

the maximal linear deformation.

By substituting equation (9) into equation (7) and taking into consideration, that

F1 (t)=——k, (x—x] —11)—b1 (fr—i1)

F2 (t)=—k2(x—x2 +12)—b2(x—x2)
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we obtain the equations for control laws:

U1+T1 U1 =—(kF1-kl +kp1)x1—(kV]+kF1b1)5cl +kF1k1x+kF1bljc+kF1(Fp~k111)+k171xp1

(10)

U2 +T2 U2 =—(k„-2 -k2 +kp2))c2 —(kV2 +kmbz)ic2 +kF2k2x+kmlazic+kF2(Fl7 —k212)+kpzxp2

The relations (10) present the general case of linear control laws for two connected manipulators with different

characteristics and coefficients of position, velocity and force.

3 Stability of the System of Motion

To study the stability we rewrite the equations of motion (6) and the control law (10) in deviations from the sta-

tionary regime holding for the deviations from the old symbols x, x1 ,x2,U1 ,U 2 . We obtain the following

equation system:

M056+(bl+192)3k+(k1+k2)x—bl)k1—k]x1—bz)k2—k2x2 =0

M1561+(d21+bl)ic1+k1x1 —b1)'c—k1x—d11U1 =0 (11)

M2562 +(d22 +b2)jé2 +k2x2 —b2)'c—k2x—d]2U2 = 0

and the control law:

U1 +T1 Ul = —(k„k1 +kpl)x1 —(kvl +knb1 )x] +kFlk1x+kF1b15c

(12)

U2 +T2 U1 = —(k„k2 +kp2)x2 —(kv2 +1ch2 )x2 +kF2k2x+kF2b2jc

The stability of the system (11) and (12) is given by the position of the roots of the corresponding characteristic

polynomial in the complex plane. This polynomial is of 8—th order, which is a consequence of the fact that:

1) There are three second order differential equations describing the motion of the load and of both manipulators

(with three degrees of freedom).

2) There are another two, first-order polynomials which make the mathematical analysis of the stability even

more difficult. In spite of this, the analysis is possible in some special cases.

3.1 The Stability of a System with Position Control and without Delay in Feedback Loop

In the control laws (12), we set the coefficients of the force kF1 z kF2 = O and the delay time T1 = T2 = 0 . Then

by substituting the equations for the control voltages U1 ‚U2 in the system (11) we rewrite it in a matrix form:

My+KV§+KPy=0 (13)

where the symmetric matrices and vectors have the form:

MO 0 o bl +b2 —b1 —b2

M = 0 Ml 0 KV —b1 d2, +131 +dnkv1 0

O 0 M2 —b2 0 d22 +b2 +dnkv2

k1 +k2 “k1 ‘kz 56 5c x

Kp = —k1 k1+d11kp1 0 x] x] y: x1



 

We use the direct method of Lyapunov and assume the Lyapunov function in the form:

1 ;* ; _* _

V=E(y -M-y+y -K„ 'y)

where the sign " * “ means the operation of transposition.

The positive definiteness of the matrix M is obvious, and the positive definiteness of the matrix Kp follows

from the fact that its principal diagonal minors are positive (Gantmacher, 1960). By the same reasoning the ma-

trix KV is also non-negative definite. Therefore, V is a positive definite quadratic form.

The final form of derivation ofLyapunov function V , taking into consideration the system (13), has the form:

dV ;* " _ 4* L

EH (W +K„y)=—y KVySO

So, we have shown, that with position control and no time delay, the motion of the system is stable for any values

of the gain coefficients in the control systems of both manipulators, for any load mass, and for any characteristics

of the force sensors.

This result is a generalisation of the result obtained in Kim and Zheng (1989).

3.2 The Stability of the System with Symmetrical Control Law and in Presence of Time Delay in Feed-

back Loop

Now we consider a system of two equal manipulators, which have symmetrical control laws and equal feedback

gains of positions, velocities and forces corresponding:

M1=M2=M k1=k2=k b12192 2b d11=d12=d1

d21:d22:d2 kv1:kv2=kv knszzsz T1 =T2 =T

Then the equations (11) take the form:

Mojé+2bx+2kx—b(jc] +5c2)—k(xl +x2)=0

Mx'I —bx+(d2+b)jc] +ch1 —kx—dl U1 =0 (14)

M562 —bic+(d2 +b))'c2+k.x2 ~kx—d1 (12 =0

and the control law (12) takes the form:

U1 +le1 = ~(ka+kp)x, —(kV +ka)x, +kax+ka5c

(15)

U2 +TU2 = —(ka+kp)x2 —(kV +ka)5¢2 +kax+kajc

In this case, even though the degree of the polynomial remains 8, the system splits up into two polynomials of 3rd

and 5th degree, respectively.

For the sake of the stability analysis let us introduce non-dimensional variables by the formulas:

n k _ _ _ .
t=p‘/;-t x: kp x xichgoxi Ui=g'— (i=1.2) (16)

  

Here the bar points to non-dimensional variables.

By expressing dimensional variables with non-dimensional variables and substituting them into the system of

equations (14) and (15) we obtain the following system in non—dimensional variables (bar will be left out):
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ujc'+2ß)'c+2x—ßjcl —x1—-ß562 —x2 =0

561 +(oc+[3)jc1+x1 —Bjc—x—U1 =0

562+(OL+B)x2+x2~Bjc—x—U2=O (17)

TU1+U1+(f+s)x1+(v+ßf)jcl —fx—ßf)'c=0

TÜ2 +U2 +(f+s)x2+(v+ßf)jc2 —fx—ßf)'c=0

 

 

 

 

 

 

 

d C b M 2 k C k d k C k
Herea:__2__= 2 , B=_P, u: OP 1 f:de1=F1’ =V1p=V1’ T=Tp _a

VMk pVJk VJk J P VJk VJk J

k d1 k C1 _ _ ‚ . . .
= pk = pk are non—dlmensmnal express10ns determining the behaV1our of the system.

P

This mathematical model is based on the assumption of the same characteristics for both manipulators and identi—

cal positions, velocities and force feedback coefficients in both control laws. This fact makes the analysis of the

8th order characteristic polynomial simpler, because it is factored into two polynomials of 3rd and 5th order,

respectively.

The characteristic polynomial is

F8 (Ä) = F, (A) - F5 (x) (18)

where

173(X)='c9t3 +[r(oc+|3)+1]7t2 +(oc+[3+r+v+[3f)7t+f+s+1,

F5 (7») = In}? +[2Br+r(0t+fi)u+u]7t4 +[215+20€ßT+TLL+2ß+(0(+ß)u+(v+ßf)}i]7\.3

+[2m+2+2ocß+p+2ßv+p<f+s)]>€+2(oc+v+ßs)7„+2s

Further, for simplicity, we will consider the force sensors as only elastic but not viscous-elastic (availability of

viscosity only increases the zone of stability). According to the Hurwitz criterion, the asymptotic stability condi—

tion of the system may be written in the form:

OSSSS* (19)

where the limit value S * is defined from the corresponding squared equation and has the form:

5* =—12—[%(0c+v)(f+2)+0t(0c+v)—(fi+1)(f—0L‘C)—w/B] (20)

where

2 l 2 2 2 2 1 2

D:(f—orc) [—201+v) +(—+1) :l+2(0t+v)(————l)[06(2f—(X‘C)——f ]

17 LL u ‘C

Figure 2 shows the relationship between limit gains k; and time delay T in the control loop (curve 1) obtained

in correspondence with equations (19) and (20).

The numerical parameters of the manipulator used for the calculation of this curve are as follows (Gorinevsky et

al., 1997):

C1 =2,64-10‘3 Nvm/V C2 = 6-10‘5 N-m-s p = 294.104 In J = 6,96-106 kg-m2
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sensor stiffness is k=lO5 N/m; load M0=10kg; velocity gain kv=54104V-s/m; force gain

kF = 1,0 V/N.

The range of the time delay T is selected from 0,01 s to 0,1 s which corresponds to real values of delay for vari—

ous robot systems.

With T <<l , the equation of the neutral curve (20) separating the field of stability from the field of instability

becomes simpler, and the corresponding condition for asymptotic stability (19) may be written in the form:

   

035<“+"—f

I

or in dimensional parameters

C

oskp<i (l-—2+kV)—k>kF (21)
T p C1

-5

K2310 Wm

50

1

2

10

-2

5 10 T-1O s

Figure 2. The Relationship between Limit Gains k; and Time Delay T

C . .

Since the values kV are much bigger than the values of , the inequallty (21) may be written as

p C1

k

OSkp<7V—k~kF (22)

Figure 2 displays also the corresponding curve (2) specified by the above variables (kV, k, kp Since the curve

(2) is located lower than the curve (l), it is clear that by fulfilling the condition (22), the condition (19) is also

satisfied.

As follows from condition (22) the domain of stability is diminished with the increase of gain k F and the stiff—

ness of force sensor k . That is to say, the system with a "soft" sensor is more stable than one with a "rigid" one.

The stability domain increases with increase of velocity feedback gain kV . The system is always stable in ab—

sence of a time delay (T —> 0 ).

Let us consider in detail a case of a position strategy of a manipulator control (kF —-> O ). In this case the relation—

ship between the commanded positions of two manipulators has the form:

F
xpz = xpl + 2(1 —I)
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that is, the commanded position of the second manipulator, xp2 , is determined as the sum of the following terms:

the commanded position x111 of first manipulator, the constant 21 and deformations of elastic elements of the

force sensors with stiffness k under the action of the force F . The inequality (l9) may be rewritten in the form:

0 S S < S* (23)

where

5* =l|:(oc+v)(oc+2)+oc(2+l)—oh/B:l

2 “c u

D =(3+1)212 —2(oc+v)(3—1)r+(oa+v)2

H H

The values S * and D are positive for all admissible values entering expressions for these parameters.

We consider in more detail the relationships obtained in this case.

Figure 3 shows the neutral curve k; = kp (T) separating the stable and the unstable domain. The values of other

parameters are fixed and they are the same as in Figure 2. The curve has a flat minimum given by parameters

>l< _ 5 . . . . . . . .

T z 0,6 s, kpmm — 3,94 v 10 V/m. Thus, the system lS stable With any time delay 1f the posmon gain kp is smaller

‚k

than k1mm. Certainly, the values of time delay are limited to such values for which the relationship (9) is ful—

filled. The curve has also a horizontal asymptote:

, 1 2C
limkp :—(C2+pClkV)-+

T->°° C11: Mop +2J

With increase of the value of the load, MO , the stable domain narrows monotonically (Figure 3). Moreover, the

equations of corresponding limiting curves have the form:

* 1 1
limk=———(C+Ck)-—

[Mo—>001] Clp 2 Piv T

. t 1 C 1
11mk=—C+Ck -—2—+—

M0—>0p 1p(2 plv) (J T)

i -5

Kp-1owm

20

10

K1) mln

  

l I ‘1

1 5 10 T 108

 

Figure 3. The Neutral Curve k; = k I, (T) Separating the Stable and the Unstable Domain
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4 Conclusions

The analysis of a mathematical model of two, one-degree—of—freedom manipulators holding a load allows us to

make the following conclusions:

1. Using position control and in the absence of time delay in the feedback loop, the system is stable with any

gains, mass of load, arms, and force sensor stiffness.

2. The linear symmetrical control system with the position and force feedback loop is also stable in absence of

time delay.

3. With time delay in feedback loop and linear symmetrical control laws, the range of position and force feedback

gains in which the motion of manipulators are asymptotically stable has an upper bound. The stability domain

diminishes with the growth of the sensor stiffness (k ) and mass (M 0 ) of load. Thus, the system stability may be

violated by an increase of position (kp )‚ force (kF) feedback gains, stiffness k of force sensor, mass of load

MO , and by an increase of time delay T . An increase of velocity feedback gain kV stabilises the control system.

Literature

1. Bouffard,Y.; Dauchez, P.; Delebarre, X.: Manipulation of flexible objects with a two-arm robot, IMACS—

IFAC Symposium MCTS’ 91, Lille, France, (1991), 508-512.

2. Dauchez, P.; Delebarre, X.: Force—controlled assembly of two objects with a two-arm robot, Robotica, 9,

(1991), 299—306.

3. Gantmacher, F. R.: The Theory of Matrices. Chelsea Publishing Company, New York, NY, (1960), 462.

4. Gorinevsky, D. M.; Formalsky, A. M.; Schneider, A.Yu.: Force control of robotics systems, CRS Inc.‚

(1997), 368.

5. Hayati S.; Tso, K.; Lee, T.: Generalised master/slave coordination and control for a dual-arm robotic system,

in: Robots and Manufacturing, New York, ASME Press, (1998), 421-430.

6. Kazerooni, H.; Tsay, T. 1.: Control and stability analysis of cooperating robots, American Control Confer-

ence, Atlanta, (June 1988).

7. Kim, K. 1.; Zheng, Y. F.: Two strategies of position and force control for two industrial robots handling a

sing object, Robotics and Autonomous Systems, 5, (1989), 395—403.

8. Kokkinis T.: Dynamic hybrid control of cooperating robots by nonlinear inversion. Robotics and Autono—

mous Systems, 5, (1989), 359-368.

9. Kopf C. D.: Dynamic two arm hybrid position/force control, Robotics and Autonomous Systems, 5, (1989),

369-376.

10. Kosuge, K.; Ishikawa, 1.: Task-oriented control of single-master multi-slave manipulator system, Robotics

and Autonomous Systems, 12, (1994), 95-105.

11. Perdereua, V.; Drouin, M.: Hybrid external control for two robot coordinated motion. Robotica, 14, (1996),

141—153.

12. Pujas, A.; Fraisse, P.; Pierrot, F.; Dauchez, P.: Robust hybrid position/force control of robot manipulators:

experimental results with two coordinated Puma 560 arms, ICAR’95, Sant Feliu de Guixols, Spain, 2,

(1995), 629-634.

13. Raibert, M. H.; Craig, J. J .: Hybrid position/force control of manipulators, ASME J. Syst, Meas., Contr.,

103, No. 2, (1981), 126-133.

14. Tao, J. M.; Luh, J. Y. S.; Zheng, Y. F.: Compliant coordination control of two moving industrial robots,

IEEE Trans. on Robotics and Automation, 6, No. 3, (1990), 322-330.

158



15. Uchiyama, M.; Dauchez, P.: A symmetric hybrid position/force control scheme for the coordination of two

robots, Proc. IEEE Int. Conf. on Robotics and Automation, (1988), 350—356.

16. Von Albrichsfeld, Ch.: Self-adjusting active compliance controller for two cooperating robots handling a

flexible object, Robotics and Manufacturing systems, Proc. of the World Automation Congress (WAC’96),

Montpellier, France, 3, (1996), 765-770.

17. Wen, J. T., Kreutz-Delgado, K.: Motion and force control of multiple robotic manipulators, Automatica, 28,

No.4, (1992), 729—743.

18. Whitney, D. E.: Force feedback control of manipulator fine motion, Trans. ASME, J. Dyn. Sys. Meas. Con-

trol, 99, No.2, (1977), 91-97.

19. Zheng, Y. F.; Chen, M. Z.: Trajectory planning for two manipulators to deform flexible beams, Robotics and

Autonomous Systems, 12, (1994), 55-67.

 

Addresses: Dr. lgor Zeidis, Technical University Ilmenau, Faculty of Mechanical Engineering ,Department of

Technical Mechanics, Max—Planck—Ring 12, House F, D—98693 Ilmenau, Germany, Tel.:+49(0)3677/691812

Dr.-Ing. habil. Anatoii Schneider, Fraunhofer Institute for Factory Operation and Automation, Sandtorstr. 22,

13—39106 Magdeburg, Germany, Tel; +49(0)391/4090230, Fax.: +49(0)391/4090345, e—mail: schnei-

dcr@iff.fhg.dc

159


