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Optimal Control of the Stretching Process of Solar Arrays on a

Spacecraft Using a Genetic Algorithm

X. S. Ge, Y. Z. Liu, Q. Z. Zhang

The optimal control problem ofspacecraft attitude during its solar arrays stretching process is discussed in the

present paper. It points out the results of nonholonomic behavior of the system. Instead of traditional Newton

iteration methods, the genetic algorithm of optimal control is proposed. The authors study the optimal control

algorithm ofnonholonomic behavior according to the genetic algorithm. The results ofthe numerical simulation

show that this approach is effective for the control problem of spacecraft attitude in the stretching process of

solar arrays.

1 Introduction

With the development of space technology, the mechanisms of the spacecraft become more and more complex,

and large stretchable multi—wing solar arrays have became indispensable parts of spacecraft. When the large

solar arrays are stretching in space, the attitude of the spacecraft is changed due to the coupling of stretching

motion and attitude motion (Liu, 1995). In order to ensure that the spacecraft is located in the designed position,

we must study the control law in the stretching process of solar arrays. Li and Wang (1996) have studied the

influence of the stretching motion ofthe spacecraft with appendages on the attitude of the spacecraft. Ge and Liu

(1997) have discussed the optimal control problem in the solar arrays stretching process. They used the Gauss —

Newton iteration method (Femandes et 31., 1991, 1994) in the optimal control to search for the optimal solution

Recently, a new genetic optimization algorithm (Holland, 1975, 1992) is rapidly developed, and is widely used

in a variety of fields. The genetic algorithm has several merits, such as it employs the target function only, needs

no other assistant condition, searches for multi-point values in the solution space simultaneously, has the cha-

racter of a parallel process, and so on. Therefore it has a wide adaptability. The present paper uses the genetic

algorithm to study the optimal control problem ofthe solar arrays stretching process, and provides the numerical

method of optimal control. Firstly we use multibody dynamics to obtain the dynamics equations a spacecraft

with solar arrays. While the nonholonomic behavior of the system is considered, we set up the control target

function of the system, define the genotype of chromosome and the function of fitness, and design the corre-

sponding genetic operation. By the results of a numerical simulation it is shown that this method can solve the

control problem ofthe spacecraft attitude efficiently in the solar arrays stretching process.

2 Dynamics Equations
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Figure l. Spacecraft with Solar Arrays

   

The spacecraft with solar arrays is supposed as a chain multibody system composed by four rigid bodies

B,(i z 1,---,4) connected with cylindical joints (Figure l). BI is the spacecraft, 82,83 and B4 are the solar

arrays. In Figure 1, (O-XYZ) is the translation frame whose origin point O is the mass center of the system,

(o,- —x‚-y‚-z‚-) are the body-fixed frames of each body B‚(i: l,---,4). 1,-(i: l,---,4) are the distances from the

internal joint o, to the external joint 0,- +1. c‚-(i = l,---,4) are the distances from the mass center to the internal

joints 0,-, and c1 = O. The mass of the spacecraft is m1 , the moment of inertia is J1 ‚ the mass of each solar

array is m‚(i : 2,3,4) . The augmented body-hinge vector ofthe system is (Liu, 1995)
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bij = (Ci—[90% (i=1) (1)

ms k=i+l

l 4

and b,- = — mici+li Zink (i=l,---,4) (2)

where ms is the total mass ofthe system. The vectors p‚(i = l,- ~-,4) , pointing from the total mass center O to the

mass centers c, of each body, can be inferred from equation (1) as

i—l 4

pi Z Ciei + Zlkek _ Zbkek (i:la"'a4)
(3)

k:1 k=l

As no external moment of force effects the system, the momentum of the system with respect to (O-XYZ) is zero,

and the moment of momentum with respect to point O is conservative. It is assumed that the initial moment of

momentum of the system H0 : 0, according to the conservation principle of moment of momentum, it can be

stated that

(Ji‘wi+Pixmipi)= 0 (4)M
»

I

i „ .

Substituting equation (3) into equation (4), and considering that coi = 2 p; 61- , we obtain

‚1:1

124’2 + [—(122+13z+14z)61+(13z+14z)63]=0 (5)

where (1)1 is the attitude angle of the spacecraft, 6_‚-(j :1,2,3) are the relative angle between solar arrays,

4

IZ = Ell-Z is the total equivalent moment of inertia of the system, [/2 is the equivalent moment of inertia of
«i=1 . .

each body B,- with respect to point O. Equation (5) has the form of a nonholonomic constraint equation. It shows

that the solar arrays can disturb the attitude of the spacecraft during the stretching process from the folded state

to the stretched state.

3 Optimal Control Problem

We define the attitude x = (p1,9],62,93)7' of the system as a state variable, and consider the relative angle

velocity 6,-(1' 21,2,3) between each solar array as input variable, noted as u

u :

The state variable of the system is written as follows

)2 : B(x)u (6)

where

B1 Bz B3

1 0 O

B x =

( ) 0 l 0

O O 1
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Bl : (122+13z +14z)/Iz B2 Z “(132+I4z)/Iz 33 = 142/12

In the solar arrays stretching process, we search for the optimal control input u(t) according to an optimal index.

We employ the principle of minimum energy control, and choose the dissipative energy of each rotation joint of

the solar arrays as the optimal control index. Then the target function is

J(u) = jgv(u,u)dt (7)

where u(t)is the measurable vector function of the Hilbert space L2. We consider the cases of a fmite dimensio-

nal space in the actual calculation, specified by the linear combination of Fourier basic vector {a,- (Courant

and Hilbert, 1953) as

u : gag-on,- = (but
(8)

N

i=1 a

matrix composed of orthogonal Fourier basis vectors. Regarding 0L as a new control variable and considering

the condition of terminal constraints ofthe system, the target function of equation (7) becomes (Fernandes et a1.

1994)

where 01,-(1' = l,---,N)is the projection of the function u onto the basis vector {ai} (I) is a n >< N dimensional

J(a,7t) = äag + xflflü-„HZ (9)

i=1

where X is a penalty factor, x(T) is the state of the system when t = T under a given control input u. Obviously

x(T) is a function of a, and noted as x(T) = f (a), when N and Ä are given, equation (9) can be written as

J(a) = <u,a> + 7tHf(u)—fo2 (10)

Therefore, the problem of making equation (7) take a minimum by searching for the control input u is changed

into that ofmaking the target function (10) take a minimum by searching for a.

4 Genetic Algorithm of Optimal Control

We employ a genetic algorithm to solve the optimization problem. Firstly the variables are coded to form the

chromosomes. The different chromosomes form a population. To suit our problem, we evaluate the value of

fitness according to the state of survival of the fittest. A new generation population with better adaptability is

constructed in terms of three genetic operations viz. selection, crossover, and mutation. The evolution procedure

is continued until the optimal solution of problem is obtained. In general, binary strings are used to encode the

optimal parameter space in the genetic algorithm. When the number of parameters becomes large and the range

ofparameter values becomes great, the speed of convergence ofthe algorithm will become slow. As the floating-

point representations (Goldberg, 1991; Michalewicz et al., 1992) have the advantages of good precision and

convenience to search for in a large space, floating-point coding is utilized. According to the genetic algorithm,

considering the optimal control problem in the solar arrays stretching process, we design the genetic algorithm

steps as follows:

1. Chromosomes representation: Utilizing the parallel searching mechanism of the genetic algorithm, we code

awhich is the projection of function u on Fourier basis in equation (8). The chromosome is an N-

dimensional vector composed of all oc‚-(i = 1,2 - - ' ‚ N

a = [a1,o<2,---, aN] (11)

where 0t,- are real.
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2. Initializing the population of parents: We generate n components randomly, the components of each parent

is selected from a Gauss random variable with zero mean value and unity standard deviation.

The selection of fitness function: We define the fitness function asU
.
)

—— (12)

where J(a) is the target function in equation (10), a is the chromosome.

4. '0 Selection: The fitness value g,(oc 1-)(1' = l,2,-~,N )of each chromosome is calculated according to equation

(12). The generation probability ofthe ith chromosome is given by

Pi Z Ngi(ai) (13)

§gi(oci)

The roulette wheel selection is used in the process of individual selection.

5. Crossover: A simple one-point crossover is employed. Two chromosomes are selected randomly according

to the crossover probability PS, a splice point is determined uniformly at random. The genetic codes follo—

wing the splice point are interchanged, and two new chromosomes are generated as shown in Figure 2.
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Figure 2. Crossover Chart

6. Mutation: Some components (xii (j = l,2,---, m)of the chromosome 0c, are chosen to mutate according to the

mutation probability Pm , that is, adding a Gauss random variable on the components of individuals

ocij : org- + 6J (14)

where öj is a Gauss random variable.

7. The steps (4) - (6) are repeated until the optimal solution satisfying the condition is obtained.

5 Simulation Example

The mass and geometry ofthe spacecraft are m1 = 200 kg, J1 = 322 kgmz, those of the strechable solar arrays are

l

m2=5 kg, 5 >< l = 0.5 x 1m2;m3 =m4 = 10 kg, l >< l = l ><1 m2.The time used in the stretching process is

t 2 SS . The control parameters of the genetic algorithm are selected as: The dimension of the chromosomes

N = 15 , the probability of crossover PL. 2 0.8 , the probability of mutation P = 0.06, the number of evoluti-
m

5

on generation R = 2000. In the simulation calculation, we have selected 15 terms of the Fourier basis. {51,- (t)},.=1

is specificed as

0,5 sint cost sin 2t cos 2t

0 0 0 O O

0 O 0 O 0
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and {a‚-(t)}}96, {cg-(02:11 are obtained by permuting the rows of the above components. The example considers

that the solar arrays are fully stretched from the folded state; it is ensured that the attitude of the spacecraft in the

initial and the final state remains unchanged. The initial and final configurations of the system are respectively

x0 = [0,0,0,0]T x, = [0,n/2,n,n] 7'

The genetic algorithm calculation is terminated when the 2000‘11 generation is reached. The results of the simula—

tion are shown in Figures 3—4, where the Figure 3(a) shows the optimal trajectory of the spacecraft attitude, (b)-

(d) show the optimal trajectory of the relative angle of the solar arrays, the two end points of the curve are the

initial and final configuration of the system, Figure 4 (a)-(c) show the trajectory of optimal control input of the

solar arrays. In these figures, the solid curve is the calculation result obtained by the genetic algorithm, the

dashed curve is the calculation result obtained by the Gauss-Newton iteration method (Ge and Liu, 1997).
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Figure 4. The Optimal Control Input for Solar Arrays

6 Conclusion

1. It is a new and useful attempt to introduce the genetic algorithm into optimal control. The results of a simu-

lation calculation show that the genetic algorithm is effective in solving the optimal control problem of a

spacecraft system with stretchable solar arrays.

2. In the genetic algorithm, the selection of floating—point representations solves the contradiction between the

precision demand and the amount of calculation. Then it is benefitial to an optimal analysis of the parame—

ters.

3. For traditional methods of optimal control search for the optimal solution, it is necessary that the target

function has good continuity and differentiability. The genetic algorithm used in this paper requires one fit-

ness function only, and no differential or other assistant information, and it has wide adaptability.

4. Genetic algorithm is used to study the optimal control problem of the attitude of a spacecraft with solar

arrays in this paper, at the same time it also supplies a new way to solve other optimal control problems.
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