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Effect of Surface Rheology on Contact Displacement

A.S. Kravchuk

The paper deals with the mathematical modelling of the effect of surface rheology on the greatest contact

displacement. The displacement defined by contact rigidity is determined It is established that roughness creep

has an essential influence on the greatest contact displacement for some combinations of materials of cylinders

and the rheology parameters of their surface.

1 Introduction

Plastic deformation has a leading role in the creation ofthe real contact area in some cases of loading. In general,

the plastic yield of an asperity is accompanied by creep. The rheology processes take place for a highly loaded

contact of machine parts and lead to modification of the contact area, pressure, and rigidity. The increased

accuracy of mechanisms stimulates the development of methods of the theoretical analysis of the influence of

basic geometric parameters of machine parts and their surfaces on the rigidity of joints (Demkin, 1981; Levina,

1971). It is necessary to note that many theoretical and experimental works are devoted to the solution of this

problem. But these empirical and semiempirical solutions are established only for some combinations of

geometric and technological parameters of the body surfaces (Levina, 1971).

It is necessary to point out that the mechanics of rough surfaces has a number ofpeculiarities. So the problem of

contact of two rough bodies can be reduced to the problem of smooth and rough bodies (Demkin, 1981). In

addition the account of the contact of real surfaces has been done for the element of surface in the limits of

which it is possible to consider pressure as constant in this theory (Demkin, 1981). It is important to note that we

can define the probability characteristics of surface roughness on this element. This explains methodical

complexities of solving contact problems for real surfaces.

In this paper we describe a method of theoretical definition of the greatest contact displacement of rough

cylinders which allow to take into account the rheology parameters of their surfaces.

2 Rough Surface Problem

Consider an elastic isotropic plate with a rough cylindric hole of radius R . A smooth elastic disk of radius r is

put into it. It will be assumed that 82 and 8/R with (s = R—r > 0) are small values. A force Y acts along the

y— axis (Figure 1). Since the displacement defined by creep of roughness slowly varies in time, this problem

can be considered as a static problem concerning a parameter of additional displacements which depend on time

t (Chigarev, 1998). The temperature T inside the hole is assumed to be constant. Friction has little influence on

the normal contact pressure. Therefore, we shall assume that it is absent in the contact area L (Teply, 1983).

In the area of contact we have

a + ui‘j cos(c) + vii me = u; cos<o + (v3?) ~ ö, — e>sin<o (1)

where u;f,,v;: (n = 1,—2) are components of the displacements of the plate with the hole (n =1) and for the

elastic disk (n = 2); ö, = v: (3n/2) —v: (37t/2) is the displacement ofthe disk center.

Let
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where un’,,vn7,,un,,,vng, are displacements of the ba31c material and additional displacements determmed by

roughness creep, respectively.
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Figure 1. Scheme of Body Locations

It is important to note that the creep of roughness does not essentially depend on developing of contact area

(entrance in contact new micro irregularities) (Demkin, 1981). We shall assume that the elastic radial

displacement in the area of contact, being determined by the deformation of a micro-irregularity, is given by the

following expression (Chigarev, 1998):

v: = u: cos(Q) + vf sin(§) —u; cos(g) — v; sin(C) = he, (9) = A, (cos(6) — cos(oc‚ )) e e [—0c„oc‚] (2)

where h is the greatest height of roughness (h/R is a small value); 8 ‚(6) is a correction of radial deformation of

the profile ofhole defined by creep ofroughness, 0t, is a contact half-angle.

The averaged Steclov’s values of deformations and pressure in limits of base length (Figure 2) arc
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where 2R1?) (0t, 2B) is a base length of a measurement of characteristics of asperity, o:(n),3:(n) are

distributions of microstress and microdeformations for asperity (6:,8: are integrable functions). The roughness

is assumed to be in the condition of
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Figure 2. Scheme of Interaction.

plastic yield, therefore, we assume that its material is incompressable. In the case of nonlinear creep of asperity

we get (Johnson, 1987)
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where H8 is Brinell hardness; [H3 is a time for test on Brinell hardness; b,?» are coefficients of a bearing area

curve; In is a constant defined by an experiment (Demkin, 1981); t is the time (t ZIHB ). Hence we get

(Chigarev, 1998)
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On the other hand, from equation (3) we obtain
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As the bodies are in the equilibrium at time tthen

8;, (e) = 8,3,, (a) pa, (e) = pm (9)

where 813,,(6), p13,,(9) are average Steclov’s values of correction of deformation 8‚(6) and pressure p, (6)

( p, (9) = ~0, (6) ) in the limits of the base length for smooth bodies. Therefore equation (4) is also valid for these

functions.

Functions s‚(6),c‚(9) are continuous on [—Ot,,0t,] and indefinite - differentiable on ]—Ot,,0t,[. Then taking

into account equation (4) we can obtain the following approximation
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where
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U does not exceed 12% of researched values (Chigarev, 1998).

Therefore we get
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Hence

51 Z V2,: GTE/2) _ V1,! (375/2) + A10 _ (305(0‘1 (5)

3 Basic Formulae for Elastic Contact of Cylinders

It’s known (Teply, 1983) that the stress state of an isotropic plate can be defined as

 

62,1 + 02,1 = 2[q)n,t (W) + QM (6)

cg, — 6:” + 2113;, = 2e“ Font, (w) + t1!„„(w)]

where w: z : pe'c (p e [R‚+oo])‚w: s : pe’.C (p E [0,r]) ; i: \/—1 ; (I)„’‚(w)‚‘P„’‚(w) (n = l, 2) are analytical

n

p, are the normalfunctions in the exterior of the hole (n: l) and the interior of the disk (11:2); 02),,6

components of stress; Tgc’, is a tangential stress. Since friction is absent in the contact area hence we obtain

(Teply, 1983)
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where Y is a principal vector of forces, R1=R and R2 :r ; G‚(9):GR’‚(6)=6U(6),GE[-060,010],

T = Re’äg = reic and (Kravchuk, 1998)
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or, — cos(0c,)sin(oc,)
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where v” (n : 1,2) is Poisson’s ratio of the basic material for plate (n = 1) and disk (n = 2); E„‚(n = 1,2) is

Young’s modulus; G1," = (1—v5),G2‚„ : (1+v„)‚ (n 21,2)—for the state of plane deformation;

GU, 2G2!" =1,n:(1,2) — for the state of plane stress; Kn =3—4v,,,(n=1,2)—for the state of plane

deformation; Kn : (3 — v„)/(1 + v„)‚ n = (1,2) — for state ofplane stress. Beside that we have
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where 1/5„ , (n = 1,2) are radial displacement for the basic material ofplate and disk, respectively; p is a distance

up to a zero coordinate.

4 Contact Displacement in the Problem of Elastic Isotropic Disk and Plate with Hole

From equations (1), (5)-(10) (Johnson, 1987; Timoshenko, 1951) we get
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p1 is a constant which defines the distance where the displacements in the plate are equal to zero; p2 is a constant

which defines the distance where the displacements in the disk are equal to zero (in a coordinate system

connected with the disk centre) (Timoshenko, 1951).

It is important to emphasize , that first and second items of equation (11) are defined by a solution of the

problem for a point force in a continuous plate. It explains the presence of a logarithmic singularity. It defines

displacements which are determined by the deformation of the whole plate and disk. The third and fourth items

of equation (1 1) are defined by absence of tangential stress on the contour of hole and disk. The other items are

defined by contact rigidity (local displacements) of the plate with hole and the disk.

Hence we can define the greatest contact displacement as

C C r
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It has been established that the obtained dependence of ö

a rigid disk defined by equation (12), is analogous to the dependence defined by Shtaerman’s scheme of loading

(Teply, 1983) when 0L, 2 do e [0, n/6] (Figure 3). In this case the value of stress ofa separation

who / 8 on the contact half—angle for a smooth hole and

0‘0

— 2

5;(D»C)‘(p,Q)=(R,0) =7 mode

0

has a small influence on the contact rigidity. Its influence on contact displacements is essentially increased when

OLO > 71/ 6 (Figure 3). It has been established that the value of the contact displacement is defined by plastic yield

of asperity in a time tH3 and further is not changed for steel, hardened disk and plate. The results of theoretical

solution of the problem show that the roughness creep has essential influence on the greatest contact

displacement for some combinations of materials of cylinders and rheology parameters of their surfaces

(Figure 4).

5
cont!)

1,5 - l

/.9

   

I I I I I

n/18 71/9 n/6 27:19

Figure 3. The connection between öcom’o /s and (X0 for smooth hole and rigid disk:

1 is defined by equation (12); 2 is defined by Shtaerman (Teply, 1983).
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Figure 4. The theoretical connection between ö /8 and time I for smooth steel disk (E1 = 210-109 N/mz,
CDHIJ

v1: 0.3) and rough hole:

1 - the plate is lead (E2 :17-109 N/mz, v : 0.3, HE : 40-106 N/mz, m : 0.065, h =12.5-10'6 m, x = 2,

b = 0.642, rm, =10 s, T= 2930 K (Demkin, 1981)) and P =100N ;

2 — the plate is tin (E2 : 50-109 N/mz, v2 = 0.3, HB = 45-106 N/mz, m : 0.096, h =12.5-10‘6 m, 1 = 2,

b = 0.642, [HE = 10 s, T: 2930 K (Demkin, 1981)) and P = 260N;

3 - the plate is lead and P = 900N ;

4 - the plate is tin and P = 2400N ;

5 Conclusions

The method of theoretical definition of the greatest contact displacement of rough cylinders which allow to take

into account the rheology parameters of their surfaces is worked out.

Roughness creep has an essential influence on the greatest contact displacement for some combinations of

materials of cylinders and rheology parameters of their surfaces.

Literature

1. Chigarev, A. ; Kravchuk, A.: Creep of a Rough Layer in a Contact Problem for Rigid Disk and Isotropic Plate

with Cylindrical Hole, Proc. of 6th International Symposium on Creep and Coupled Processes Bialowieza,

September 23-25, Poland, (1998), 135-142.

2. Demkin, N.; Ruzov, 8.: Quality of a surface and contact of machine parts, [in Russian], Moskow, (1981),

244.

U
)

Johnson, K.: Contact mechanics, Cambridge University Press, (1987), 510.

4. Kravchuk, A.: Mathematical Modelling of Spatial Contact Interaction of System of Finite Cylindrical Bodies,

Technische Mechanik, Band 18, Heft 4, (1998), 271-276.

5. Levina, Z.; Reshetov, D.: Contact rigidity ofmachines, [In Russian], Moskow, (1971), 264.

6. Teply, M.: The contact problems for regions with the circular boundaries, [In Russian], Lvov, (1983), 176.

7. Timoshenko, S.; Goodier, J.N.: Theory of Elasticity, 3rd ed. — New York, London et al.: McGraw-Hill,

(1951), 560.

 

Address: Candidate of Science (Eng) A. S. Kravchuk, Senior scientist, Department of Theoretical Mechanics,

Belorussian State Polytechnic Academy, F. Skorina-ave, BY i 220027 Minsk

245


