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Parametric Vibrations of Viscoelastic Cylindrical Shell

under Static and Periodic Axial Loads

S. P. Kuntsevich, G. I. Mikhasev

Low-frequency parametric vibrations of a viscoelastic cylindrical shell subjected to axial static and additional

periodic loads are studied It is assumed that the shell is noncircular and the load is non—uniform in the circum-

ferential direction. It is supposed that for the weak parametric excitation the shell vibrations are localized near

the weakest generatrix on the shell surface. By using Fourier transformations over the circumferential co-

ordinate and the multiple scale method with respect to time, the solutions of the shell equations are constructed

in the form offunctions that decrease quickly outside a small neighbourhood of the weakest line. The region of

instability ofthe shell is determined with regard to the viscosity.

1 Introduction

To the present time a lot of investigations on the parametrical instability of thin cylindrical shells have been

carried out. For example, vibrations of shells subjected to various combinations of static and periodic loads have

been considered by Yao (1963), Wenzke (1963), Vijayaraghavan and Evan-Iwanowski (1967), and Grundman

(1970). However, the majority of the obtained results concern ideal shells with constant parameters. It has been

known that in this case the parametric Vibrations are accompanied by the formation of waves covering the whole

surface of the shell, and the problem of dynamic instability reduces to the Mathieu equation with coefficients

that are functions of a static bifurcation load and a fundamental frequency of a shell.

In this paper we examine the parametric instability of non-circular thin cylindrical shells, which experience static

and additional periodic axial loads. Both load components are inhomogeneous in the circumferential direction,

and the frequency of excitation is close to double the fundamental frequency ofthe shell. The case is considered

when vibrations are characterized by the localization of modes near the weakest (Tovstik, 1995) generatrix on

the shell surface.

This investigation is a continuation of Mikhasev’s article (1997). The main goal of this paper is to study the

special case that cannot be examined by the methods that have been used by Mikhasev (1997). In addition, the

influence of a viscous damping coefficient on the main instability region is studied here.

2 Setting a Problem

We consider the thin viscoelastic non—circular cylindrical shell that is sufficiently thin for the applicability of

both the assumptions of the classical shell theory and the asymptotic methods. The orthogonal co-ordinate sys-

tem (x, (p) is assumed as shown in Figure 1 so that the first quadratic form of the middle surface has the form

R2 (ds2 + dcpz). Here s : x R'1 is a dimensionless longitudinal co-ordinate (0 S s S l = L/R), R is the characteristic

size of the middle surface (it will be defined below), L is the shell length, q) is a circumferential co-ordinate

(cpl S q) 3 (p2). In this case the curvature radius R2 = R x“ ((p) is variable.

 

Figure 1. The Co-ordinate System
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Let the shell be subjected to the combined non—uniform axial load (see Figure 1)

w = 83 EhF<<p, r) Fm), r) =F0 (so) + 221i (cp) cos 9* t* (1)

where E is the Young’s modulus, h the shell thickness, 86 = h2 / [12 R2 (1 — v2)] a small parameter, v Poisson’s

ratio, 9* the circular frequency of the additional periodic axial load, and t* the time.

It is supposed that the vibrations are accompanied by the formation of a large number of short waves covering

the shell surface. It is assumed also that F (q), t) is a slowly varying function so that the stress state of the shell

due to the axial stress T1* may be considered as the membrane one. Taking into account these assumptions, for

the analysis of parametric vibrations the semi-membrane shell equations (Bolotin, 1956; Vlasov, 1958; Tovstik,

1995)
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written in the dimensionless form may be used. Here A : 82 / 8s2 + 62 / 8902. The parameters 8 and 1F 1 are con-

nected with the corresponding magnitudes introduced in Mikhasev’s paper (1997) by the following relations

8 = M2/3 F‘1 z 8-1/2 13‘]

The dimensionless magnitudes are introduced as follows:

w=w*/R cI>=cI>*/(a3EhR2)

(3)

t=t*/tc Q=Q*tc y=8"/ZtC5/p t,.=R p/E

where w* is the normal deflection, (13* is the stress function, to the characteristic time, ö is the viscous damping

coefficient, p is the mass density. The functions x ((9), F0 ((p), F1 ((p) are supposed to be infinitely differentiable.

Let the shell edges be joint supported so that at the edges s = 0, s = lNavier’s conditions
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are posed. To satisfy boundary conditions (4) the solution of equations (2) is assumed to be ofthe form

’ p„s . nS

w : w„ ((p, t) Sln q) =fn ((1), f) 51" (pas/2)
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The cases p" < l and p" > l have been investigated by Mikhasev (1997). Now we consider the case p,, z 1. Sub-

stituting (5) into (2) yields the sequence of equations
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with respect to w,,, f" for n = 1, 2, . The subscript n in p", w", )2 will be omitted below.

It is assumed here again (Mikhasev, 1997) that vibrations are concentrated near some weakest generatrix (p = (p0

that will be found below. We shall scale near this generatrix and introduce a slow time (Nayfeh, 1973):

Q=8"(<p—(p0) t0=t t1=szt

The problem is to construct a solution of equations (6) under the conditions

w,f—>0 as ICI—>00

Then the condition of periodicity in (p or the influence of the edges q) = (p1, (p = (p2 can be neglected (at least in

some initial time interval in the case of the parametrical resonance).

3 Approach

The uniformly valid asymptotic solution has the form

W((P>t98)EZSk wk(9>t05tl) f((pat78)gzgkfk(g=t09tl)

k k=0=0

The functions x ((p), F0 ((4)), F1 (<p) are expanded into series in the neighbourhood of the generatrix (p = (p0. For

example,

x (<9) : x ((Po) + 8 x’ (cpo) C + 0‚5 82 x” ((90) C2 + (8)

Let x ((po) = 1, then the characteristic size is the curvature radius R = R2 ((po) at the weakest generatrix. As the

case p z 1 is considered here, it may be assumed

P:1+821~? (9)

wherefi~ l ass—>0.

Substituting equations (7)—(9) into equation (6), with eliminating the functions fk, produces the sequence of

equations

k

ZDjkajzo k=0,1,2,... (10)

j:0

Here
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3.1 Zeroth and First Order Approximations

In the zeroth order approximation (k = 0), one has the homogeneous equation D0 wo = 0 which has the solution

Wo (C: to, ti) z W0,s (C, t1) Sin 03010 + Wo,c (Cs [1) COS 030 l‘0 (11)

wä:2—Fo(cpo)

Here (no / IC is the zeroth order approximation of the fundamental frequency (Thompson and Willson, 1979) of

the thin cylinder under the axial load T1* = s3 E h F0 ((po). It can be seen that F0 < Fb : 2, where the value Fb = 2

corresponds to the classical axial buckling force T1“ : 2 e3 E h (Timoshenko, 1936).

For k = 1, equation (10) leads to the non-homogeneous differential equation

D0w12—D1w0

The right part of this equation, with (l 1) in mind, generates secular terms with respect to to. To eliminate these

terms it should be assumed

2X'((Po) — F0'((Po) I 0 (13)

This equation allows to determine the weakest line (p 2 (p0. Let us consider the special case x’((po) = Fo’((po) = 0

here. Then equation (12) is transformed into the following one

D0 W1:0

its solution can be found in form (1 1)

W1 (Q: to, II) : W1,s (Ca [05111 (0010 + W1,c (C, t1) C05 03010 (15)

3.2 Second Order Approximation

In the second order (k = 2) approximation, we obtain the non-homogeneous differential equation

D0 WZZ—DZ WO—D1 W1

It can be seen that condition (13) yields identically D1 wl E 0. Therefore equation (16) can be rewritten as

D0 W2:*D2 W0

It is known that the parametric instability occurs in the case when the ratio (2* / 03* is equal or close to one of

the following values (Yao, 1963)

Q_*:2.2.2 2 2

m 12:???"-

where 03* is the fundamental frequency of the shell.

Let us consider here the basic case when the excitation frequency is close to the double fundamental frequency:

Qt2mo+szs c~lass-—>0 (18)

Then equation (17) takes the form
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D0 W2 z—(NS sin (DO t0+Nc C05 030 t0)+

  

(19)

+%1‘:1 ((1)0) [W0,s Sin (3(00 to ‘1‘ G l‘1) + W0‚o COS (303010 + 0'11)]

where

a4w0‚5 1 n n 2 N

Ns =4 ad +5[2X ((PO)‘F0((PO)]G W0,s +2P12“F0((P0)1W0,s '

ö 1 ~ .

f (2 a—tl + y) 030 wo;C + 5 F1 ((1)0)(w0,S cos 011+ wo,C sm G t1)

(20)

6414/00 1 N n 2 N

Ne :4 6g; +312X ((Po)‘ F0((P0)19 Wo; + 2P[2 — Fo((P0)]W0,c +

a l N .
+ (2 57+ y) 030 wo’s +5F1(cpo)(wo‚s Sln G I] — W0,c COS 511)

1

The first term of the right part in equation (19) generates secular terms. The absence condition of these terms

yields a system of equations

NS = NC = 0 (21)

The last ones may be rewritten as the differential equation with respect to the vector X = (was, wage)T

Ö4 X 2 N 2 Ö ‚

4a—C4+5[2 X”(<Po)~Fo”(<Po)lC X+2P (00X+ 2571+Y 030E X+G X:0 (22)

0 —1 1 N cosctl sin th

E’: :—F
(1 0 j G 2 ‘(¢°)[ ]sin otl — cos (it1

By applying the Fourier transformation

+00

1 . . ‚

X (c; n) TE fXF (n; n) e1“C dn xF (n; n) : (m: (n, n); m5 (n; of

to equation (22), the lower order differential equation

4 F l H u 82 N 2 F a I F F4T] X —§[2)(((pO)—FO (cpo)]a—n2~—+2p030X + 2ä7l+y (DOEX +GX =0 (23)

is obtained. The substitution of
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x = r n r = f2 [2 X”((P0) — Freon—“6

into equation (23) gives the equation

 

F a
414(x4xF—agfz +%fam§r4xF)+(zaHJmOE'xMtho (24)

1

It is required to find a non-trivial solution of equation (24) so that |XF| —> 0 as |x| —> 00.

We consider the problem

y};+(7t4x4)y=0 y—>O as x—éioo (25)

Let km andym be eigenvalues and eigenfunctions (m = 0, l, 2, ...) respectively for problem (25). For example, the

first two eigenvalues are M z 1,125, M z 3,750.

The solution of equation (24) is

XF :ym (x) YmOl) Ym : (Small): Cm(tl))T

The substitution of equation (26) into equation (24) leads to the homogeneous system of differential equations

with respect to Y,,,:

Y”, — A”, ([1) Ym = 0 (27)

where

—-ä-—alsinc5tl —a2

Am (t1) = m + al cos 6 t1 azym + a, cos c t] (28)

—%+alsinotl

F~l km H H N

a: : ——4(DO 02,," = 2—030 [2 X ((Po) — F0 (QMM + P (00

4 Free Vibrations

If F1 E 0, then system (27) has a solution in the explicit form. In this case the approximate formula

TE”

2

l S][exp{—%t} - (c1 sin (or + 02 cos mt)-Zm ((p, a) + 0(8) (29)

 

Wk 2 Rsin[

for the mode of free vibrations takes place, where
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l

Zm ((P: 8) = m

 

j )2». («/5 [2 x"(q>o) # Fo”(<po)r”6 n) expms’lw — wo)}dn

(30)

+szlm§i§g2j—-.fl”_§;i§<fi+gF—z-Fo<¢o>l+o(s4l

Here (9* = 03 /tC is the fundamental frequency depending on the parameters km and Equations (29), (30)

supplement the analogous ones for the cases p < 1, p > 1 (Mikhasev, 1997). It should be reminded that the error

of these formulas increases while F0 —> Fb (in this research Fb = 2).

5 Parametric Instability

The shell normal deflection is defined by the approximate formula

W“ = Rsin£7t7s

 

)K‘Sm (€2t)Sin thO + Cm (a2t)cos (noto Zm ((p, e) + 0(8)] (31)

Depending on the correlation of parameters a1, am, e, y, formula (31) defines the unstable or stable vibrations of

the shell in a small neighbourhood of the weakest line (p = (p0. In the case of absence of a Viscosity (y I 0) the

region of instability for equation (27) has been established by Mikhasev and Kuntsevich (1997). In Figure 2 the

boundaries of this region are shown by dashed lines. We have found the region of instability of equation (27) in

case of non-zero Viscous damping coefficient. In Figure 2 this region is shaded. For points (6, a1) lying in the

shaded area, the amplitudes Sm(82t) and Cm(82t) of parametric oscillations are functions growing infinitely with

time, and outside of this area the amplitudes are bounded.

    

Figure 2. The Main Regions of Instability

It should be kept in mind that solution (31) is an asymptotic one, and the regions of stability and instability in

Figure 2 are valid while a1, am, 0 ~ 1 as a —> O.
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6 Conclusions and Example

Taking into account the results obtained earlier (Mikhasev, 1997), solutions (29), (31) allow to study both the

free and parametric vibrations of the thin viscoelastic non-circular cylinder under inhomogeneous in the circum-

ferential direction static and addition periodic axial loading in the case when the shell has the weakest generatrix

and the frequency of excitation is about the double fundamental frequency. The main regions of instability in

Figure 2 permit easily to determine the intervals Q’SQ£Q+ for the dimensionless excitation frequency

Q = (2* tc corresponding to the dynamic instability

+ 3 h2 +

932% We at P“

+ 4 h2 +_: — >Q 2(00 12R2(1"V2)0 at p<1 or p 1

where c5i = 2 (am i a1). Moreover, in the first case (p z 1), the parameters (no, a1, am are found by equations

(11), (28), while in the second case (p < 1 orp > 1) the correspondence formulas derived in Mikhasev’s paper

(1997) should be used.

For example, let us consider the circular elastic cylinder (x = 1, y : 0) under the combined non-uniform load (1),

where F0 ((p) 2 0,5 (1 + cos (p), FI is constant. Here the weakest generatrix is the line (po : 0, where the axial

force T1* is maximum. The dependence of the parameters p, Qi and the dimensionless fundamental frequencies

03 on numbers n and m for F1 = 1 and F] I 2 are shown in Table 1. It can be seen that increasing the amplitude

F1 of the periodic component of the axial force results in extending the boundaries of instability.

 

F1

ll

3
1 1|

N

 

n p m=0 m=l m=0 m=1

 

Q’ (2* (n (2’ (2+ 0) Q“ (2+ 03 Q’ (2+ 03

 

1 0.332 0.693 0.712 0.351 0.769 0.787 0.389 0.684 0.721 0.351 0.760 0.769 0.389

0.665 1.327 1.363 0.627 1.358 1.394 0.688 1.308 1.381 0.627 1.339 1.413 0.688

0.997 1.981 2.036 1.004 2.016 2.071 1.022 1.954 2.064 1.004 1.988 2.099 1.022

   

J
Ä
U
J
N

1.329 3.067 3.131 1.550 3.126 3.189 1.579 3.036 3.162 1.550 3.094 3.221 1.579

 

5 1.662 4.835 4.898 2.433 4.882 4.945 2.457 4.804 4.929 2.433 4.851 4.976 2.457

                

Table 1. The Dependence of the Parameters p, 9:, (1) on Numbers n, m

for the Shell with h = 0.01, R =1,l= 0.52, v = 0.3
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