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A Continuum Model for Highly Porous Aluminium Foam

W. Ehlers, A. Droste

The development of manufacturing highly porous metal foams by new and cheap production processes

is nearly finished and ready for industrial usage. For further development of existing as well as new

applications, it is necessary to have preliminary knowledge of the mechanical behaviour of the applica—

tions under external loads. By use of the Theory of Porous Media (TPM) it is possible to describe a

gas—filled foam as a two-phase material within the framework of a macroscopic, continuum mechanical

model. Numerical investigations are carried out by use of the finite element method.

1 Introduction

By the development of ecological and economical effective production processes for the manufacturing

of metal foams, this material becomes more and more interesting for industrial usage. Especially, the

mechanical behaviour opens a wide range of new possibilities for engineering applications. The low

density and high stiffness, the special behaviour of plasticity under compression, the acoustic damping

for open pored foams as well as the thermal isolation aspect of closed cell foams give a new solution

potential for this kind of material.

In the further context, a foam is classified as a combined structure of fluid—filled cells, where neither the

volume fraction of the matrix material nor the volume fraction of the fluid material is negligible. The

foam is called ‘closed cell foam’ when the single cells are closed, whereas it is called ‘open cell foam’ when

the cells are interconnected and the fluid has the possibility to flow through the matrix. Furthermore, if

the cell matrix material consists of metal or metal alloys, the foam is called ‘metal foam’.

 

Figure 1. Closed cell (left) and open cell (right) aluminium foam.

There are four classes for the manufacturing processes of metallic foams: the pulver metalurgical process,

the melt foaming process, the sputter technology and the electro chemical process (Weber, 1997). By the

different processes, and, therefore, also by the different process controls, special material behaviour can

be obtained by changing either the porosity or the geometry of the cells or by varying the homogeneity or

the isotropy rates of the foam. These special requirements often increase the costs of the manufacturing

process.

A detailed description of the manufacturing processes is given in e. g. Banhart (ed.) (1997). A lot of

examinations have been made for the classification of the mechanical, acoustical, thermal and electrical

behaviour. Gibson and Ashby (1997) presented an overview which allows for a comparison of metal foams

with polymeric foams, which are for a longer time in practical use in real applications. Independent from

the different foaming processes, a general macroscopic model is needed for the prediction of the material

behaviour in components only depending on measurable macroscopic material parameters.
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2 Theory of Porous Media (TPM)

Resulting from empirical examinations, it is nowadays possible to obtain detailed descriptions of the in—

ner structure of a foam at the microscopic scale. The geometry of the individual pores and the cell walls

depend on the used manufacturing process. On the one hand, new methods like the computer tomog—

raphy (CT) allow for more precise classifications, but, on the other hand, even by increased computer

power the calculation of real applications on the microscale is not feasible until now. Thus, statistical

macroscopic continuum mechanical models are nessecary to successfully represent the behaviour of foam

materials under external loads.

For a wide range of engineering aspects of multiphase materials, the continuum mechanically and thermo—

dynamically based Theory of Porous Media (TPM) gives a general concept for a macroscopic description

of the material behaviour. An overview of this theory can be found in Bowen (1980, 1982), de Boer and

Ehlers (1986) and Ehlers (1989, 1993, 1996). In this paper, only a short summary of the TPM will be

given.

The TPM is a phenomenological theory where the partial bodies of the mixture, the so—called phases

or constituents (pa, are in ideal disarrangement. This leads to a statistical model by a real or a virtual

averaging process which results in the concept of superimposed and interacting continua.
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Figure 2. The theory of mixtures extended by the concept of volume fractions (TPM). The ac—

tual, saturated structure (volume dv, density p) is homogenised by an averaging process

towards a statistical model with superimposed and interacting constituents (pa (volume

du“, effective density paR).

Herein, the representative volume elements (RVE) are occupied by material points Xa of the involved

phases go“, where the geometrical and physical characteristics of the partial bodies in each space point

are defined by field functions. From the geometric relationships, the corresponding volume fractions of

the phase (pa occure as the local ratio of the volume element do“ occupied by (pa to the volume element

d1) of the mixture in the actual configuration:

CV

a_dv

n __d?
(1)

Since in reality only saturated multiphase materials exist, the saturation condition has to be fulfilled:

D“ =1 o
(1

Based on the introduction of the volume fractions, two different density functions of the individual phases
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exist. Thus, relating the mass element dm“ to the local volume du“ leads to the effective or real density

C!

aR_dm

  

_ 3)

du“

(

whereas relating dm“ to the local volume do of the mixture represents the partial density

dmGta Z 4
p dv ( )

The densities are coupled by the volume fractions:

pa 2 napaR (

Following this concept, it is seen that in case of material incompressibility of the phase (‚0“ (paR = const.)

the partial density p0t in the control volume can vary through changes of the volume fraction na.

The TPM proceeds from the assumption that at each time if each spacial point x of the current con-

figuration is simultaneously occupied by material points X C‘ of the involved phases 90”, which originate

from different reference positions Xa at time t0 < t. Thus, each constituent undergoes its own function

of motion

X = Xa(ch t) (6)

Presupposing a non-singular Jacobian matrix, i. e. the existence of the inverse function of motion X31,

each material point X 0‘ has assigned an one—to—one reference position at time to. In coupled solid—

fiuid problems, the motion of the solid is described in a Lagrangean form and the motion of the fluid

is described relative to the deformed solid skeleton in a modified Eulerian setting. Considering the

aluminium foam as a binary porous medium consisting of a materially incompressible solid phase (,pS

saturated by a compressible gas (fluid phase) <pF, the function of motion of the phase 90“ leads to a

corresponding velocity and acceleration field for each constituent. Thus, one obtains in the Lagrangean

form

I Ö II , 62

xa: äXJth) Xa: (Va)a : anixmt) (7)

The symbol denotes the first material time derivative and the symbol denotes the second

material time derivative following the motion of the constituent 90“.

Also a transformation relating the time derivative with respect to the motion of a constituent gag and

that With respect to constituent (pa can be formulated by

l

(..)j, = (H); + grad(..) - (‚2a _ xß) (8)

Following this, the corresponding total time derivatives of any scalar field a : a(x‚ t) or any vector field

a : a(x,t) following the motion of e)“ are defined by

‚ Ö
’(a), = 55:— + grad a- it. (a); = ä + (grada) Xa (9)

Herein, the operator ‘grad’ means partial differentiation with respect to x.

In the case of the solid skeleton (p5 , the Lagrangean description leads to the primary variables

115 Z X - X VS 2&3: (115');

where 115 is the displacement and VS the velocity of the solid phase (p5, respectively.

The deformation gradient of the solid skeleton and its inverse are given by

5x _ ÖX'

: m Z Gradsx F51: —s : gradXSF

S 8x
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where ‘Grads’ means partial differentiation with respect to X3.

The natural variable to describe the fluid motion relative to the deformed solid skeleton is the so called

seepage velocity

WF :3ICF — >25 (12)

The acceleration of the fluid phase is expressed with respect to the deforming solid skeleton, with the

equations (9) and (12), by

$£F= (vs +wF):g+grad(vS+wF)wF (13)

3 Balance Equations

By use of porous media theories, each constituent can be described by individual balance equations

taking into account the necessary interactions between all constituents. The balance equations of the

mixture are derived as the sum of the balance equations of all constituents. Furthermore, because the

body does not know, whether it is a mixture or not (Truesdell, 1984), the mixture balance equations

must have the same form as the respective balance equations of a single body. Thus, the properties of

the mixture follow from the properties of the constituents without any additional assumption.

Excluding mass exchanges between the constituents, the balance of mass equation of a constituent (pa

is given by

(pa); + padiv y’ca: 0 (14)

According to equation (5), the partial density can be formulated in terms of the volume fraction 71“

of the constituent and the real density pQR per unit volume. For incompressible constituents, the real

density paR is constant. Therefore, the balance of mass equation (14) can be reduced to the balance

equation for the volume fractions:

(nu); + nadiv x“: 0 (15)

For superimposed continua Without mass exchanges, the balance of mass equation for the mixture gen—

erally can be derived simply by summing up the single balances:

210)“); + padiv {ca} 2 0 (16)

Oz

The balance of linear momentum of each constituent reads

pa 52a: div Ta + pub + pa (17)

where T“ is the partial Cauchy stress tensor of «pa, b is the body force density acting upon all con—

stituents, and p“ represents the momentum production term of (pa, which can be interpreted, in the

meaning of the two—phase aluminium foam description, as the interaction force per unit volume between

the solid skeleton and the gas phase.

The balance equation of linear momentum of the mixture is given by the sum of the single momentum

balance equations (17) including a constraint condition for the momentum productions between the

phases. Thus,

p 32a: Z[div To‘ + pab + pa] 2p“ : 0 (18)

CY(V CY

For numerical computations within the Finite Element Method using the weak formulation of

the balance equations, the advantage of equation (18) is that it is not necessary to separate the applied

external loads into parts acting upon the solid and fluid consitutents.

Restricting to isothermal processes and assuming microscopically non-polar constituents (symmetric

Cauchy stresses, TO‘ = TTO‘), the balance of moment of momentum is preconditioned and the problem

becomes independent of the balance of internal energy.
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4 Constitutive Equations

The basic constitutive approach to binary models in porous media theories is sufficient for the determina—

tion of the respective sets of response functions, which cannot be chosen arbitrarily. Instead, they must

be compatible with the second law of thermodynamics. So the constitutive equations must reflect the

restrictions imposed on the different models by the dissipation principle. Thermodynamical restrictions

for the two—phase model under consideration, namely the hybrid model consisting of an incompress—

ible solid skeleton filled with a compressible fluid, result from the appropriate version of the entropy

inequality combined with the basic constitutive assumptions for the respective material. Because the

general procedure of deriving thermodynamical restrictions from the entropy inequality of the respective

two—phase model proves to be rather laborious, producing lots of lengthy formulae, only the main results

related to the used simplified model are given here. The reader who is interested in further details is

referred to Ehlers (1989a, 1989b, 1993a, 1993b).

Thus, in assuming an incompressible solid skeleton saturated by a compressible pore fluid, the partial

stress tensor can be divided into a pressure depending part and an extra part:

Ta = —napI + TC; (19)

Therein, I is the second order identity tensor weighted by the effective fluid pressure p and the volume

fraction n“ of phase (pa, while the second term represents the extra stresses. These extra stresses, Char-

acterised by the additional index E , must be specified by additional constitutive relations.

In the following investigation, non—linear finite elasto—plastic behaviour of the solid skeleton is assumed.

Proceeding from the multiplicative split of the deformation gradient F5 into an elastic and a plastic part,

FS : FSerp, a plastic intermediate configuration is implicitly introduced. A nonlinear elastic Neoe

Hooke type law for porous materials (Eipper, 1998) modified by Mahnkopf (1999), leads to the elastic

extra stresses formulated in terms of the Kirchhoff stress tensor T2; : (detFQTi in the following form:

. v2 J J

T%=MS(BSe—I)+ÄS(1—ni)( Se S

 

e

1_ng — Js_ng)1 (20)

Therein, the elastic left Cauchy- Green strain tensor is defined by B5,, = FSnge, Jse = det F56 is the

Jacobian of the elastic part of the solid deformation and n: = noss(det F513)"1 the solid volume fraction

with respect to the intermediate configuration; A5 and [LS are the Lamé constants of the solid skeleton.

This formulation allows a correct representation of the point of compaction, where all pores are closed

(n5 : 1‚nF : 0), see Section 6 (Figure 6).

In the following, it is assumed that in comparison with the interaction force, the friction effects depending

on the fluid viscosity within the fluid phase are negligible. Thus, the extra stress is assumed to be zero,

TE z O. In this case, the partial fluid stresses only depend on the pore pressure and the actual volume

fraction of the fluid, TF 2 —nF pI. For compressible fluids, the hydrostatic pressure is defined by an

equation of state, and, under isothermal conditions, depends only on the real fluid density pFR. In the

simplest case it is given by the ideal gas law

p: pFRRFe
(21)

where the multiplication of the specific gas constant RF, the constant temperature (9 and the real fluid

density ‚oFR is defining the hydrostatic pressure p of the pore—fluid.

As was assumed, the solid skeleton is fully saturated by the pore-gas, and constitutive relations must

be given for the partial stresses T“ and the interaction force p“ of the fluid phase depending on the

primary variables and their derivatives. Two different velocity effects for open pored structures (wF 7f 0)

or closed pored structures (WF 2 0) can be modelled by the interaction force leading to the Darcy law:

F F (”F)27FR
p : pgradn — TWF (22)

Therein, yFR is the effective specific weight of the pore fluid and kF is the Darcy permeability coefficient,

which, as a macroscopic quantity, does not only depend on the viscosity of the pore-fluid but also on
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both the size and the structure of the pore space.

In the present work, the considerations are based on the assumption of an isotropic pore structure and

closed cells, i. e. (WF 2 0).

5 Plasticity

The general response of the elasto—plastic model is affected by the solid deformation gradient F5. The

description of finite elasto—plasticity for the solid constituent is based on the multiplicative decomposition

of F5 into an elastic and a plastic part

FS = Fserp (23)

In addition, as is known from several publications on continuum theories for single continua, the con—

cept of the multiplicative decomposition is connected with the assumption of a stress-free intermediate

configuration (Figure 3) which, in the case of the general deformation process, is incompatible with the

existence of partial derivatives when they are considered as field functions.

            

5 F5 = Fs. F5 )
nos P I

reference — intermediate — actual configuration

Figure 3. Sketch of the multiplicative split of F5.

In Figure 3, n35 represents the volume fraction of the solid in the reference configuration (t = to), n5 is

the volume fraction of the solid with respect to the intermediate configuration (see also equation (20))

and n5 is the actual volume fraction of the solid. The quantities

F56 : gradSzx Fsp : GradeSz (24)

are point functions, only defined in the subregions of the intersected intermediate configuration. The

position of particles X S in the intermediate configuration of (pS are defined by ng, whereby grads,

means partial differentiation with respect to sz. In the case of homogeneous deformations, the field

character of relation (24) generally holds. The multiplicative decomposition is not unique but can only

be determined, up to an arbitrary rotation (Haupt, 1985, Ehlers, 1991). Here, quantities belonging to

this intermediate configuration are indicated by the topscript The multiplicative decomposition of

the deformation gradients implies the existence of only two proper spatial velocity gradients, L5 and

LSP, the former relative to the actual and the latter relative to the intermediate configuration of gas, see

Ehlers (1989a/b, 1991):

LS = (ME: Es 2 (Few; (25>

Their symmetric parts are

1 T A 1 A AT

135 = 5(LS + Ls) DSp Z 5(1‘513 + 1‘51?) (26)

where D5 characterises the solid deformation rate of the spatial configuration and 155p the purely plastic

deformation rate of the intermediate configuration.

As it is known from theories of constrained materials, the plastic behaviour only depends on the extra

stresses. Following this, a yield function applicable for a wide range of materials including isotropic
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hardening porous materials can be introduced by the single surface yield condition by Ehlers (1993):

     
A m

A A HID 1A. .A A A.
F(I‚HD, HID): HD (1 + 7m) + 50412 + 5214 + 51 + 512 - re 2 0 (27)

(HD)

Therein, f : 72% -I is the first invariant of +27, HD : %(%%)D - (+%)D is the second deviatoric invariant

of (%%)D and IÜD = %(+%)D - (+§)D(+§)D is the third deviatoric invariant of (71%)? given in terms

of the intermediate configuration.

The parameters a, 13,7428, K) and m are material parameters which, in the frame of isotropic hardening,

may depend on the plastic deformation history through the plastic strain paths Egp(t). In general:

‘1) : <I>(E5p(t)) with <1) : {a,fl,7,6,s,n,m}.

The yield function (27) must be understood as a very general condition suitable to describe the onset

of plastic deformation effects of both compression and extension. By setting 7 = O and m = 1, the

triangular shape of the deviatoric plane canges to a circular form. Setting additionally fl, 6 and 5

to zero, the Green’s yield condition for ductile media (Green, 1972) representing an ellipsoid in stress

space results. With a = Ö = e = 0, the well—known Drucker—Prager criterion can be modelled or with

or 2 ß : 6 = E = 0 the van Mises yield function is represented. In the principal stress space, the general

yield function F = 0 represents the single surface yield criterion, Figure 4.

 

I

Figure 4. Single surface yield function in the principal stress space (left) and the deviatoric plane

(right).

The terms in equation (27) depending of 7 and m govern the typical triangular shape of the yield surface

in the deviatoric plane, whereas a, ß, 6, a, n describe the ellipse—like yield function in the hydrostatic plane.

These parameter set must be fitted to experimental results from triaxial and biaxial tests, see Ehlers &

Miillerschon (1999). Furthermore, the concept of associated flow leads to unrealistic results for frictional

materials such as porous metal foams or granular porous materials. Thus, a general non-associated flow

rule must be introduced to govern the plastic rate of the deformation tensor 135p:

 

('28)

Herein, the plastic potential

A AA /A 1 A. Ä A A A. A
G(I, ID): HD + 50412 + 5214 + ,6] + 512 +g(1) (29)

and a proportional factor A are used. The function g(f) describes the difference between the measured

dilatation under compression and the values resulting from an associated flow rule.

Following this concept, it is easily concluded from the preceeding results that the plastic response for

brittle aluminium foam proves to yield the respective response for ductile materials if 7, m and §(f) are

zero. Furthermore, the flow rule can be transformed from the plastic intermediate configuration of the

solid to the actual configuration or the reference configuration of (p5 by the well known push—forward or

pull-back operations.

Finally, with respect to numerical computations, an algorithmic predictor-corrector procedure is used

for elasto—plastic computations. If in the predictor step F (f‚ÜD , ÜID ) is less than zero, the material
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remains in the elastic domain. If F is greater or equal zero, plastic behaviour is taken into account by

solving the nonlinear differential algebraic equation (DAE) system Where F = O is conditioned. For more

details of the numerical handling, see Ellsiepen (1999).

6 Examples

The first example shows the effects resulting from the plateau stress and the point of compaction

in a simple one dimensional test under compression within a defined closed system in the nonlinear

elasto—plastic range (Mahnkopf, 1999) and the pure nonlinear elastic range (Eipper, 1998), see Figure 5.
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Figure 5. 1—d compression, purely elastic (Eipper) and elasto—plastic (Mahnkopf) with plateau

stress and point of compaction with PANDAS (qualitative sketch)

After a short and steep so-called elastic range (I), an average yield stress (Tgwh of the elasto—plastic

approach is reached and the typical plateau stress (II) is obtained, until the global densification of the

material starts at large strains (111). The compression stress increases very fast up to the full compacted

solid material. At this point, the volume fraction of the fluid vanishes and the material has to be treated

as a single-phase solid material without porosity. With this initial boundary value problem, the main

physical aspects of foam material can be simulated.

The second example shows the stiffening effect for a basically hollow structure, see Figure 6. The simu—

lation of a shear loaded empty box (1), stiffened with inlays (1+2) and stiffened with foam (1+3) is pre—

sented. The main task is to verify that the global mass in all three cases is the same. Therefore, the thick—

nesses 6 of the box and/ or the amount of inlays are varied, while the length l, the hight h and the depth d

are constant.
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Figure 6. Stiffening of a hollow structure with inlays and foam computed with PANDAS.

As shown in Figure 6, the stiffening effect from the inlays can also be reached by the foam material,

which is an economic and also ecologic alternative material for such applications.
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The third example shows the local plastification zone of a partially loaded foam brick, see Figure 7. Be-

cause of the fact that the influence of the fluid pressure in relation to the solid stresses is negligible, the

presented model can be simplified by a porous single phase material if no thermal or acoustical influences

should be considered.

  

Figure 7. Indentation of a foam brick computed with LS-DYNA3D.

The equivalent plastic stesses es“, = , /ESp l Esp, with Esp as the plastic part of the finite Lagrangean

strain tensor, are localised in the load area, as regarded in real experiments of this kind of boundary

value problems.
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