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Thermal Anisotropy Inducing Brittle Damage

A. Ganczarski

This paper demonstrates the influence of brittle damage on the initiation and growth of mechanical and

thermal anisotropy. It is shown that even a constant temperature may cause stresses which lead to brittle

damage in an unconstrained continuum of sufi'iciently advanced level of damage. As example, a thick-

walled sphere subjected to creep-damage under constant temperature is considered. Two independent

formulations of the problem based on the Stress Equivalent Principle and the Energy Equivalent Princi—

ple are tested.

1 Introduction

The constitutive equations of the general, anisotropic thermo-elasticity fulfil the Duhamel-Neumann

relationships:

_ —1 „

Eij — Eijklgkl ‘l’ awe

where the constitutive tensor E—1 and the tensor of thermal expansion oz exhibit certain groups of

symmetry:

—1_ —1 —1_ —1 —1H —1 .._ ‚.
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Restricting our consideration, for a moment, to the case of a material which is mechanically anisotropic

but thermally isotropic, the Duhamel—Neumann equations take a simpler form:

—1

Eij = Eijklo’kl + 0106i]-

Supposed that each of the particles may freely expand, there are no stresses akl : 0 and only thermal

strains are observed 5,, : : cit/’6“. This particular case is subject ofone of the fundamental theorems

of thermo-elasticity which states that linear distribution of temperature does not produce stress in an

isotropic continuum under the condition of absence of body forces and any constraints (cf. Fung, 1965).

As a matter of fact, thermal strains have to satisfy the compatibility equations:

9%151'3‘ + 9/ij5kz - g’jlöik - a’iköjl = 0

so (9%]- : 0 or 6 2 a0 + a1m1 + Q2332 + a3x3. Referring to the case of general thermal anisotropy we

convince ourselves that the crucial point of deciding whether any stresses may or may not appear, are

therefore its thermal properties. Consider now the damage process when deterioration influences both

constitutive and thermal expansion tensors. A structure, initially isotropic, acquires mechanical and

thermal anisotropy. We will prove that in such a case even constant temperature produces stresses and

consequently may lead the structure to brittle damage.

2 Basic Equations

2.1 Representation of Constitutive and Thermal Expansion Tensors for Damaged Material

Consider a damaged solid in a current configuration, the mechanical state of which is defined by the

couple of external state variables (5,0), or equivalently in a fictive pseudo—undamaged configuration
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characterized by the effective state variables (5,5"), linked by a constitutive law, the form of which

depends on the damage equivalent principle used.

In case of the Stress Equivalence Principle (cf. Lemaitre and Chaboche, 1978)7 The stress associated with

a damage state under the applied strain e is equivalent to the stress associated with the undamaged state

under the eflective strain E (Figure 1).Thus the following relationships hold:

Physical space Effective (fictive) space

(damaged, O<D< 1) €_(1_D)8 (pseudo- undamaged , D=0)

/—-\ stress equivalence
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Figure 1: 1D Stress Equivalent Principle Visualization

e = E—1:5' and e zSEP E‘1 : o- (1)

whereas if the Energy Equivalence Principle is postulated (cf. Cordebois and Sidoroff7 1979), the respec-

tive relationships are valid:

ng‘lzö and ezEEPE‘lza (2)

where E denote the fourth—rank constitutive tensors modified by damage.

Suppose for a moment that stress and strain are caused by thermal expansion only (Figure 2), in such

a case we have (cf. Ganczarski, 1999):

5:050 and 6:646 (3)

where ä stands for the second-rank effective tensor of thermal expansion and 0 = T — To is the difference

between actual and reference temperatures.
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Figure 2: Concept of Real and Fictive Configurations in the Case of Pure Thermal Deformation

In order to develop the anisotropy caused by damage, the damage itself must be described by a tensor of

sufficiently high rank, the simplest of which is the second-rank damage tensor D as defined by Murakarni
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and Ohno (1981):

3

D : EDI-n1 sm (4)
i=1

where D,- and n, are principal values and the unit vectors of principal directions of the tensor D.

Introducing so—called damage effect tensors, which map the second-rank damage tensor D or equivalently

the second-rank continuity tensor \II = 1 —D to the fourth-rank tensor space (cf. Chen and Chow, 1995):

M101!) 2 —2— (5)

and (cf. Chaboche et all, 1995; Qi and Bertram, 1997)

‘1’11

‘1’22

M2”) : mm m (6)
v‘I/11‘I’33

V‘I’11‘I’22

and employing definitions equation (4) we may express the fourth-rank constitutive tensors equations (1,

2) in the following form:

SEPE:%[E:M1(\II)+M1(\II) : E] (7)

or

EEPE : M201!) 2 E : M2011) (8)

whereas the second—rank effective tensor of thermal expansion equation (3) is defined as follows:

ä 2 oz‘II—1 (9)

2.2 Basic Equations for Spherical Symmetry

The objective of this paper is to show that even constant temperature may cause stresses in uncon—

strained, thermally anisotropic continuum. The natural way to do so is to consider a spherically—

symmetric problem. Identifying direction 1 with the radial direction ,0 and directions 2 and 3, which are

equivalent, with the hoop direction 19, we may introduce the 2 x 2 matrices (Eij EJ-il) referring to the

constitutive tensors equations (7, 8) of the following form:

‘Ilpp + ‘I’M
SEPE']. : E (‘11,— 193W Zum—m2 (10)

2 *—_ +(1 + v) (1 21/) V pp 2 1929 WM

or

~ E (1 — 1/) ‘112 21/11 \11
EEPEi. z __ pp pp 1919 11

J (1 + 1/) (1 — 21/) V‘I’ppqhm \Ilg19 ( l
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and the effective tensor of thermal expansion equation (9) is given by:

. \1/ 1 0
„ _ PP 12

am 01i: 0 WE; ] ( )

Applying decomposition of small strains into elastic, creep an thermal parts: e : se + 5° + 5th, the

constitutive equations:

app Z Eppap/J + ZED/31951919

(13)

01919 2 EpÜEpp + szfw

are solved with respect to strains, which substituted into the compatibility equation:

(157919 + 61919 — Epp Z 0
(14)

dp p

finally yields the system of equations as follows:

: (app _ @1919” for t: 0

(15)

Hf] = (app w 671919)!) — pégp — (555919 — ägp) for t > 0

The differential operator .7: takes the form:

  

17:5,; d2... 1 eilig; d... dig; ~_1 ~-1
: —— — — — — 16

fi ] 2 dp2 2 dp dp + E ( )

and the stress components are defined by the stress function:

1df

PP p? 2/3 dp

In case of lack of damage (D = 0) the first of the equations (15) has the elementary solution :

A A

app I E); + B (71929 = —2—pg + B (18)

where A and B stand for integration constants.

2.3 Constitutive Equations of Creep-damage Problem

The previously derived system of equations (15) requires the definition of constitutive equations for creep

(cf. Skrzypek and Ganczarski, 1999).

Assuming the similarity of deviators based on the flow theory:

‚C 3 a": „
Ekl — " H Skl

 

— 25,3ff

and the time hardening hypothesis associated with the Kachanov orthotropic brittle rupture law (cf. Kach—

anov, 1986)

6'23 = (aeHqu)

(20)

‘Iln‘ = —Ci(5ii)""’ no sum over i
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where f (t) is a given time function, denote Macauley brackets, the net stress deviator and the net

stress and the strain rates are defined by the following formulae:

„ „ 1~ ‚C 2.” „ 3~~
8m = 0’161w 50mm 583 = 381,16“ Oeff I äsklskl

 

(21)

~ 011’ . .

0i,- : no summation over 2

ii

When incompressibility of creep is assumed we find:

.C“~m_Ufl__mm ft .c:~m§0m9_lfl§t 22

app—(veg) m) o m (as) (27,,“ „W o < >

In the above formulation the orthotropic damage law equation (20) contains material functions 0,, 71,-,

independent for each direction, which must be determined. Unfortunately, there are no data available

concerning material orthotropy for creep rupture, so in the next application the material isotropy C :

C19 : C and np 2 my : n is considered, but admitting an independent evolution of microcracks in both

principal directions WM, WM.

3 Formulation of Boundary Problem

Let us consider a thick—wall sphere of inner and outer radii a and b, respectively, subjected to constant

temperature (9 = const as it is shown in Figure 3.

     

tu time t

Figure 3: Thick—wall Sphere under Constant Temperature and Loading—unloading Cycle of Internal

Pressure

Initially when there is no damage (D : 0) the system of equations (15) together with homogeneous

boundary conditions lead to the trivial solution f E 0. In order to obtain a non—trivial solution we

need to produce some state of damage (D 75 0). One natural way to do so is to consider two stages of

loading. Suppose that in the first stage t 6 (0,151,) the sphere is subjected to constant inner pressure

when corresponding boundary conditions take the form:

app ((1) = —p app (b) = O for t = 0 (23)

dpp (a) = O äpp (b) I 0 for t< tu

Then, at the moment of time t : t117 the sphere is mechanically unl~oaded along the path referring,

however not to the initial (E (D z 0)) but to the actual (deteriorated E (D 75 0)) constitutive tensor:

app (tat) = app (ta) — appwip» (24)
01919 (ti) = 01919 (t5) - 01919(0‚E(D))
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The second stage begins when only constant temperature 0 : const acts:

arm, (a) = 0 dpp (b) = 0 for t > tu (25)

4 Numerical Algorithm for the Creep-damage Problem

To solve the initial—boundary value problem, we discretize the time by inserting N time intervals Atk,

where t0 = 0, Atk : tk — tk_1 and tN z tR (rupture) (cf. Ganczarski and Skrzypek, 1997; Skrzypek and

Ganczarski, 1999). Hence, the initial~boundary value problem is reduced to a sequence of quasistatic

boundary value problems, the solution of which determines unknown functions at given time tk, e.g.,

f (p,t;€) : fk (p), D (p, tk) = Dk (p), etc. At each time step the Runge—Kutta II method is applied to

yield updated functions f k, Dk, etc. To account for primary and tertiary creep regimes, a dynamically

controlled time step Atk, is required, the length of which is defined by the bounded maximum damage

increment:

ADM g 1,134 [bk (p) — lit-1m] m} : Amer (26)

Discretizing also the radial coordinate pj, by inserting an equal mesh Ap = pj— pj_1, we rewrite

equation (152) for a time step tk in terms of FDM with respect of pj. The numerical procedure begins

when the solution of the elastic problem is known. Assuming an initial components of the damage tensor

[Db E 0, the elastic solution is given by equations (18, 231). Next, the program enters the creep damage

loop which requires the vector of effective stress intensity, components of the damage tensor and strain

rates [02%, D, 212°] j to be computed. The solution of the discretized creep-damage problem equations (15,

232) provides rates of the stress function [f lj. In the next time step the ”new” stress function is computed

Uh-

5 Results

5.1 Material Data

The numerical result presented in this paper deals with a sphere made of ASTM-321 stainless steel

(rolled 18Cr 8Ni 0.458i 0.4Mn 0.1C Ti/Nb) stabilized austenitic annealed at 107000 with the following

mechanical properties at temperature (cf. Odqvist, 1974): T : 0 : 500°C, E = 180 GPa, (702 = 120

MPa, 1/ : 0.3, oz z 1.85 x 10‘5, m : 5.6, n : 3.9, of]? = 210 MPa. The magnitude of initial pressure is

equal to p : 0.2 X (70.2.

5.2 Examples

Minimal Level of Damage Advance

As it is mentioned in Section 3, the first stage of loading described by the time tu, or equivalently by the

level of damage growth maxp Dij (tu), controlling the actual level of mechanical and thermal orthotropy,

decides which of two processes is dominant: either stress relaxation or damage accumulation. In the

first case, an infinite time to rupture tR —> 00 is observed, whereas in the other case, the structure

is subjected to rupture in a finite time tR. It turns out, for the presented geometry of structure and

material data, that there exists a threshold of time 753365110“ referring to a minimal level of damage growth

maxp Dij : 19% common for both applied hypotheses of equivalence, the reaching of which guarantees

a finite time to rupture tR.

Evolution of Anisotropy

A typical distribution of the dominant damage component \111919 is shown in Figure 4. The damage

accumulation concentrates along the inner edge, whereas the center of the structure exhibits a rather

326



 

W

9
5
3
.
0

.-
‘

\
l
m
t
D
—
l
—
l

.
0
a
)

 

.
0
5
3

(
A
I
-
h

c
o
n
t
i
n
u
i
t
y
p
a
r
a
m
e
t
e
r

_
o

o

M
O
1

 

.
0

.
«
L

  

i i i i

0.5 0.6 0.7 0.8 0.9 1

dimensionless radius r=p/b

O

 

Figure 4: Distribution of the Dominant Component of the Continuity Tensor @1919 at the Moment of

Rupture

homogeneous and low level of damage growth WM : 80%. Thermal anisotropy, which is inversely

proportional to the continuity tensor equations (9, 12), exhibits a similar tendency. The mechanical

properties in equations (7, 8, 10, 11) remain generally unchanged saving their initial elastic magnitudes

except for;the last period of tertiary creep, directly preceding the moment of rupture. At this moment

E51; and Egg, which essentially contribute to the differential operator in equation (15), exhibit a rapid

increase. Theoretically they go to $00, respectively (Figure 5).
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Figure 5: Evolution of Components of the Constitutive Tensor E“1 ((1,15) during the Creep—damage

Process

Stress versus Energy Equivalent Principle

In fact, the essential difference between the Stress and Energy Equivalent Principles causes that in the

first case the local stiffness drop deals with a local Young’s modulus only, whereas in the other case the

microcrack growth influences both, Young’s modulus and Poisson’s ratio. In the presented example no

qualitative differences between both approaches are observed. For a better visualization of damage a

map of its dominant component D1919 is shown in Figure 6.
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Corresponding to the strong damage accumulation along the inneredge, the hoop stress 01919 relaxation

is not fast enough to prevent the structure from collapse due to the increase of the thermal term in

equation (152). Residual stresses at the moment of rupture tR versus initial stress distributions are

presented in Figure 7, whereas its evolution in time as well as the evolution of the dominant continuity

parameter are shown in Figure 8. The quantitative difference between the Stress and the Energy

0-1 0%

10-20%

20-30%

30—100%

damage

advance

 

Figure 6: Visualization of the Dominant Component of the Damage Tensor DM at the Moment of

Rupture
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Figure 7: Residual Stresses cm- (p‚tR) versus Initial Stresses (71'1- (p‚0) in a Sphere during the Creep

Damage Process under Constant Temperature

Equivalent Principles is observed when comparing times to rupture. They are shown in Table 1 for case

of the common threshold time tflhreShO‘d referring to the minimal level of damage growth maxp Dij = 19%.

For longer times tu > tflhreShold differences in times to rupture of both approaches decrease.
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Figure 8: Dominant Continuity Parameter \111919 (a, t) and Dimensionless Stress Components UM (a, t) /00„2

versus Dimensionless Time

 

Stress Equivalence Principle Energy Equivalence Principle

    

SEP EEP _ SEP
75R tR 7 1.06 x tR

 

Table 1: Comparison of Times to Rupture in Case of Stress and Energy Equivalence Principles
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Symbols

Mechanical Quantities

a, b

Ch ni

Thermal Quantities

Oz, a

T

To

6

radii of sphere

constants in damage law

second—order damage tensor

Kronecker’s symbol

Young’s modulus, Poisson’s ratio

fourth-order constitutive tensor

strain deviator, tensor and intensity

given time function

exponent in creep law

fourthaorder damage effect tensor

internal pressure

second—order continuity tensor

spherical coordinates

stress deviator, tensor and intensity

time

rupture time

time of unloading

second-order unit tensor

coefficient and tensor of thermal expansion

actual temperature

reference temperature

change of temperature

Additionally, following superscripts stand for quantities

e elastic

inelastic (creep)

th thermal

SEP

EEP

Stress Equivalence Principle

Energy Equivalence Principle

respectively. Also, a tilde over a symbol refers to quantity with deterioration taken into account, a dot

over quantity denotes derivative with respect to time.
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