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Determination of the Elasticity Tensor of Non—Orthotropic

Cellular Sandwich Cores

J. Hohe, W. Becker

Aim of the present study is the determination of the components of the efiective elasticity tensor of

general twodimensional cellular materials such as cellular cores used in structural sandwich panels. The

homogenization of the microstructure is performed by means of a strain energy based concept considering

a representative volume element. The strain energy is evaluated by an analytical approach based on Tim—

oshenko’s beam theory and comparati'uly in a pure numerical approach using the finite element method.

Both approaches agree well in the exemplary analysis of a non-orthotropic triangular sandwich core.

1 Introduction

Structural sandwich panels are widespread in lightweight construction since the principle of sandwich

construction enables high bending stiffness values at very low weight. A typical sandwich panel consists

of three layers: The upper and the lower face sheet made of a homogeneous material which are separated

by a low—density core (see Figure 1). The core acts as a stabilizer for the face sheets and carries the

transverse shear loads. Typically, the core is made of a twodimensional cellular material.

For reasons of numerical efficiency, the analysis of cellular materials is performed in terms of effective

properties rather than by an analysis considering the real microstructure. Thus, the microstructure has

to be homogenized. Numerous studies regarding the effective properties of cellular sandwich cores have

been performed, since the pioneering work of Kelsey et al. (1958) and Chang and Ebcioglu (1961) has

been published (see e.g. Gibson and Ashby, 1988; Noor et al., 1996 or Torquato et al., 1998). Most of these

studies are concerned with one special geometry of the cellular core material and many are restricted

to the transverse elastic properties. Only few studies are concerned with the non—orthotropic case (eg.

Overaker et al., 1998) who consider non—orthotropic hexagonal cells . To the authors’ knowledge, no

comprehensive analysis is available for the case of a non—orthotropic cellular material with general cell

topology and geometry.

The homogenization of the given microstructure can be performed in several ways. Most studies in

literature simply redistribute stresses and strains in order to obtain the efiective properties. On the

other hand, rigorous mathematical theories as the variational approach by Hashin and Shtrikman (1962)

or the perturbation theory based approach by Sanchez—Palencia (1980) are available. The present study

uses a strain energy based approach. In this context, the mechanical behaviour of a representative volume

element made of the given microstructure and a corresponding volume element made of the homogeneous

“effective” medium is considered to be equal on the macroscopic level if an equivalent deformation causes
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Figure 1: Principle of Structural Sandwich Panels
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Figure 2: Concept of the Representative Volume Element

equal strain energy for both volume elements. In two preceeding papers, this method was successfully

applied to triangular cell structures (Hohe and Becker, 1999) as well as quadrilateral and hexagonal cell

structures (Hohe et al., 1999). In the present paper, the method is applied to twodimensional cellular

media with general cell geometry.

2 Concept of Energetic Homogenization

Consider a mechanical body Q made of a cellular material. The body is bounded by an external boundary

F on which some external stresses Ti0 and prescribed displacements u? are applied (see Figure 2). This

body is to be replaced by a body (2* with the same external shape subject to the same external boundary

conditions made of a homogeneous medium with yet unknown properties.

Since the material properties do not depend on the external shape and loading conditions of the entire

body Q or Q“, a representative volume element of Q and a corresponding volume element of 0* can be

considered. The material properties of the effective material have to be chosen in such a way that the

mechanical behaviour of both volume elements is equal on the macroscopic level. Within the framework

of the present study, equivalence of both volume elements is assumed, if the strain energy stored in both

volume elements is equal for macroscopically equivalent strain states. Therefore, the condition

/w(a‚<j) dV : /w*(s;j) dV*
(1)

Q (2‘

has to be satisfied, where w and EU denote strain energy and strain tensor, respectively and quantities

marked . .)* are quantities with respect to the effective medium. According to Bishop and Hill (1951),

equivalence of the strain states on the macroscopic level is assumed if

/Eij :— /E:j dV*

Q Q'

holds. Thus, for determination of the effective properties, both volume elements have to be deformed by

a number of independent characteristic strain states EU and 5;} which satisfy equation Homogeneous

effective strain states 5,7 = éij can be used without any loss in generality. Next, the strain energy is

computed for both volume elements and the effective properties are determined in such a way that

equation (1) is satisfied. In this context, the strain energy can be evaluated either analytically or

numerically.

3 Analytical Approach

The first approach for the determination of the strain energy in the representative volume element to

be described is a simplified analytical one. An appropriate representative volume element for general
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Figure 3: Representative Volume Element for General Twodimensional Cellular Materials

twodimensional periodic cellular materials is presented in Figure 3. Independent of the cell topology and

geometry, a parallelogram—shaped representative volume element as in Figure 3 can always be found.

With no loss in generality, a local coordinate system xi can be introduced.

Next, the cellular structure in the representative volume element is splitted up into individual cell wall

elements according to Figure 4. The total strain energy in the entire volume element then is given by the

sum of the strain energies in all individual cell wall elements. The mechanical behaviour of all individual

cell wall elements can be expressed in terms of the deflections (displacements in three directions and

rotation with respect to the transverse (m3—) axis) of the cell wall ends (subsequently termed nodal

points).

In order to compute the strain energy of an individual cell wall element7 a local coordinate system :3,-

according to Figure 5 is introduced. The displacement and deformation field is assumed to consist of

three parts:

a normal deformation in the :i‘yi‘g—plane
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Figure 4: Decomposition of the Representative Volume Element into Individual Cell Wall Elements
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Figure 5: Cell Wall Element

0 transverse shear deformation (flag—plane)

mums) : 0

Üänüi) = 0 „
(5)N N N :17 N ~

11%”(561') I U(1)3 + —1 (”(2)3 — “(1)3l
l

where l, h and t denote length, height and thickness of the considered cell wall element, respectively,

while E and 1/ are the elastic constants of the cell wall material, I : ht3 / 12 and A8 : 5/ 6ht. 01 to C4

are constants which have to be determined from the boundary conditions according to standard beam

theory at the cell wall ends. The variable 17m j denotes the displacement at nodal point i in direction 5%

while Acpm is the rotation at nodal point i with respect to the ig—axis (see Figure 5).

The total displacement field 11,- is given by the sum of the three parts given in equations (3) to (5). The

strain field of the cell wall element is derived from 71, by differentiation with respect to zirj. Subsequently,

the stress field is obtained by inserting the strain field into Hooke’s law and the strain energy density

is derived as the sum of the products of the components of stress and strain. Finally, the total strain

energy of the cell wall element is obtained by integration of the strain energy density with respect to the

volume of the cell wall element. This lengthy but straightforward calculation results in:
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The remaining task consists of the determination of the nodal deflections um,- and Np“) for the entire

volume element. A complete linear system of 477. equations for the 4n unknown deflections can be derived

by the following considerations:

0 No rigid body motions of the representative volume element are permitted. Therefore (e.g.):

U(1)1 I 0

U(1)2 2 0 7

U(1)3 = 0

W2 Z 0

0 Since homogeneous effective strain states are considered on the effective level, periodic boundary

conditions have to be stated with respect to the boundaries of the representative volume element.

In this case, the same relative displacement field is obtained in all volume elements which set up

the entire structure. To ensure that neighbouring volume elements fit at their joint boundaries

during deformation, the following periodicity conditions apply:

A900) 2 A<P(z'+i) ‚ 1: 1:37-„710

110)); —’U(i)l I ’U(p+1)l —U(i+1)l , 7/: l,3,...,(p—2) , 131,2,3

we) Z Awe-+1) 7 j: (P+2)‚(p+4)‚---‚q (8)

Wg); "NUN = U(p+1)l w’U(H_1)l , I (p+2),(p+4),...,q , l=1,2,3

A900) : A9009)

0 The macroscopic strain field EU has to be related to the nodal deflections. Therefore, the volume

integral in equation (2) is rewritten into a surface integral by means of Green’s theorem:

[
o
h
—
A

1

if” : V / (ui’nj +Uj’lli)

F

where n,- are the components of the outward normal vector on P. The integration in equation (9) can

be performed, if the displacement field along the boundaries of the representative volume element

between nodal points is interpolated. Using the mid—surface displacement of a cell wall element

according to equations (3) to (5) as an interpolation function and considering the periodicity

conditions (8), the following equations are obtained:

”(M1 ’UUN

a

7 “(2)2 _ “(1)2 + 2 WP)? “ W1)?

   

€22 : b a b

7 _ l U(2)3 ‘ U(1)3 C WW3 ‘ “(1)3
523 F“ 2 < b I a b

(10)
‚ _ 1 (m3 — “(1)3

€13 — 2 a

€12 : 1(U(P)‘2 -U(1)2 + v(2)1~v(1)1 + E “(PM —U(1)1

2 a b a b

0 Since no external forces are acting, the stress resultants at the internal nodal points have to be in

equilibrium. In addition, the sum of the stress resultants of corresponding points on the surfaces

of the representative volume element have to vanish to ensure periodicity of the stress field:

F(1)Z+F(2)l+F(p)l+F(p+1)l I 0

M<u+M<2>+M<p>+M<p+u Z 0

M<i)+M(i+1> = 0 ’ i:(p+2)‚(p+4)‚m‚q (11)

Fm I 0 _

121,2‚3
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Figure 6: Numerical Approach (Triangular Core Geometry)

The stress resultants at the ends of the individual cell wall elements are easily obtained by dif—

ferentiation of equation (6) with respect to the nodal deflections. Since the assumption for the

displacement field for the individual cell wall elements satisfies the local equilibrium, the global

equilibrium with respect to the forces on the entire volume element is satisfied identically. There—

fore7 three equations of (11) have to be omitted.

The system of equations (7), (8), (10) and (ll) is solved by Gaussian elimination.

4 Numerical Approach

Alternatively to the analytical approach, the strain energy can be computed by a pure numerical analysis

using the finite element method. For this purpose, the cell walls are meshed by four—node shell elements

(see Figure 6, where a general triangular cell geometry is used as an example). A shear flexible shell

theory in an enhanced strain formulation is adopted which uses six degrees of freedom per node. The

finite element model is deformed by prescribed displacements of the top and bottom plane (wg : ih/2)

according to

501511 + 2332512 + 2x3

: 3:25:22 + 25C

1:

(
T
)

i

13

3
(12)e

n
g

which is the displacement field that would occur on these planes if the representative volume element were

made of a homogeneous material. Periodic boundary conditions are applied to all remaining surfaces of

the representative volume element:

HU(1)z($3) - “(p)z(333) “(1)l(%) ‘ ”(p)l(%)

A80(1)z(933) “ A90(p)z(933)

U(i)z(I3) — U(i+1)l($3;

A‘P(i)z(933) — A90(z'+1)l(333

H

i:1‚3‚...‚q, z:1‚2‚3 (13)

d
A s
.

/
-
\

where um 1(553) denotes the displacement of a finite element node on line i at :53 with respect to direction

in while Atom 1(r3) denotes the rotation of a finite element node on line 7', at $3 with respect to the cal—axis.

5 Example

The analysis is performed by both the analytical and the numerical approach using a general non-

orthotropic triangular sandwich core according to Figure 6 as an example. A constant value of d/ a : 0.5

is adopted while c/a is varied from —3/2 to 3/2 and five different values of b/a are considered. A

constant relative density of ß 2 0.2 is assumed during all parameter studies by an appropriate choice of

the cell wall thickness te (which is assumed equal for all cell walls). The computed components of the

effective elasticity tensor are presented in Figures 7 and 8. Here, lines denote analytical results while

finite element results are marked by symbols.
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Figure 7: Effective Elastic Properties ~ Normal and Shear Components
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Figure 8: Effective Elastic Properties 7 Coupling Components
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Figure 9: Distribution of V. Mises Equivalent Stress for Basic Modes of Deformation

In general, it can be observed that the normal and shear components increase, if an increasing number

of cell walls is orientated with respect to the corresponding directions. Therefore, 02222 and C2323 attain

their maximum, if c/a —+ O since in this case, the inclined cell walls are in their most upright position.

The opposite effect is observed in case of 01111 and 01313. A partial decrease in the case of low b/avvalues

is caused by the decreasing cell wall thickness for decreasing b/a (see Figure 8). 03333 is strongly related

to the relative density ß.

In case of the coupling components C1133 and C2233 (see Figure 8) a similar result as for the behaviour

of the associated normal components C1111 and 02-222, respectively, is observed, which can be explained

by the fact that C3333 is nearly constant. Since the triangular cell geometry under consideration is u in

general W non—orthotropic, coupling of in—plane normal and shear deformation as well as coupling of the

transverse shear deformation occurs. Therefore, the components 01112, 02212, C3312 and 013-23 exist for

all cases except c/a : O when orthotropic behaviour on the effective level is achieved.

Comparison of analytical and finite element results yields an excellent agreement except in the case of

02222 and the associated coupling components where a significant deviation is observed. This deviation is

caused by the incompatibility of the deformation of the core and the face sheets. In load cases, where 522

exists, the horizontal cell walls of the free cell structure (see Figure 6) are deformed in a bending mode

while this line remains straight on the face sheets. Therefore, additional deformation of the cell walls

occurs in the vicinity of the face sheets. This mode of deformation is incorporated into the finite element

model but not into the analytical approach. In Figure 9, the distribution of the v. Mises equivalent stress

from the finite element analysis for some basic load cases is presented. Here it is clearly observed that

far from the face sheets a homogeneous distribution develOpes (as predicted by the analytical approach)

while a significant increase occurs in some cases, as the face sheets are approached. Since this effect

causes a dependence of the effective properties on the core thickness, it is often termed as thickness

effect in literature (e.g. Becker, 1998).

6 Conclusion

In the present study, an effective material law for general twodimensional cellular materials has been

develOped. The material law is based on an energetic homogenization of the microstructure using the

concept of the representative volume element. In this context, the strain energy stored in the represen—

tative volume element is evaluated comparatively by an analytical approach and by a pure numerical

approach using the finite element method. Both approaches agree well except in cases, where strong

core—face sheet constraints are present which are not incorporated in the analytical approach.

The advantage of the analytical method is that it enables the efficient computation of the effective

properties of all kinds of cellular sandwich cores. Therefore it is useful especially for the design of

optimized high—performance sandwich cores for special applications.
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