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Local CDM Based Approach to Fracture of Elastic-Brittle

Structures

H. Kuna-Ciskal

This paper is devoted to the problem of mesh-dependence and regularization methods in the local approach to

fracture analysis based on Continuum Damage Mechanics and the Finite Element Method. The causes of the

mesh-dependence and some regularization methods are discussed first. Then the regularization technique is

proposed and illustrated by a numerical example of damage evolution and crack propagation analysis in a 2D

structure made ofelastic-brittle—damage material.

1 Introduction

Modelling of damage is related to the scale. A commonly used classification of damage models is referred to

three scales: the atomic scale (molecular dynamics, atomic bonds and vacancies, dislocations, etc.), the

microscale (microcrack size, orientation, position and slip systems), and the macroscale (effective properties,

damage variables, plastic strain tensor, etc.). On the atomic scale a material structure is not continuous, as

represented by a configuration of atoms in the order of a crystalline lattice or molecular chains, bounded by the

interatomic forces. The current configuration of the atomic bonds represents the damage state, while the breaking

and re-establishing of them refer to the damage evolution. On the microscale a piece-wise discontinuous and

heterogeneous material structure is observed, and the state of damage is determined by the topology and number

of microcraks, their size and orientation. On the macroscale, when for a large number of microdefects in an

element the exact position of the microcracks and interaction between them may be ignored, a concept of ‘quasi-

continuum’ is introduced. In other words, the discontinuous and heterogeneous solid is approximated by the

pseudo-undamaged continuum by the use of the couples of effective state variables. The definition of the

effective state variables is usually based on the strain, the stress or the energy equivalence principles. In all cases

of various equivalence principles it is assumed that in a quasi-continuum the true distribution of defects is

smeared out and homogenized by properly defined internal variables that characterize damage: the scalar

variables a) or D ( Kachanov et al., 1958), the vector variables (0a or Da (Davison et al., 1973), the second rank

tensor variables 9 , D (Vakulenko et al., 1971; Murakami et al., 1981), or the fourth-rank tensor variables, D

(Chaboche, 1982; Krajcinovic, 1989). The effective stiffness or compliance of solids that undergo damage may

also be defined in terms of the actual damage state. This fully coupled CDM approach, when the damage

evolution influences both the stress/strain state and also the elastic properties of the material (cf. Chaboche,

1977; Cordebois et al., 1979; Litewka, 1985; Murakami et al., 1997) leads to the concept of the fourth-rank

elasticity tensors, stiffness Ä , or compliance Ä—1 if the damage induced anisotropy is given by the so called

fourth-rank damage effect tensor M(D). All these models are developed in the frame of the so called Local

Approach, when the direct interaction between microcracks is ignored and the length over which they are

correlated is negligibly small (an extensive and comprehensive survey of one- and three—dimensional damage

models for elastic and inelastic solids, as well as examples of practical applications, was done by Skrzypek et al.,

1999a).

A transition between the atomic- or microscale and the effective properties on the macroscale requires a proper

selection of the Representative Volume Element (RVE), which maps a finite volume of the damaged piecewise—

discontinuous and heterogeneous solid, onto a material point of the pseudo-undamaged quasi-continuum. This

effective quasi-continuum method, also called CDM method, is based on the following assumptions (cf.

Krajcinovic, 1995):

0 each defect within the RVE is subjected to the same stress field derived from the external tractions applied

at the boundary of this element,

- influence of all other defects within the RVE on the observed defect is measured through the change of

effective stiffness or compliance.

In other words, the exact spatial correlation of the defects within the RVE has negligible influence on the

effective properties defined within the element. The crucial problem is the proper selection of the linear length

XRVE of the RVE. It must be large enough to include such a number of microdefects that is sufficient for the
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homogenization within the RVE. At the same time, the length ÄRVE of the RVE must be small enough for the

stress to be considered as homogeneous. Hence, the magnitude of ÄRVE , and consequently the finite element

size, depend on the material microstructure and on the stress nonhomogeneity. The existence of an RVE that

allows the material to be considered statistically homogeneous within the element, is the condition for a local

approach, in which there are no scale parameters involved. If, on the other hand, direct interaction of the

correlated defects becomes significant for their growth and stability, it must be incorporated into the model by

introducing the correlation length between neighbouring defects as a scale parameter. Local approach is no

longer sufficient and a non-local damage model must be established (cf. Woo et al., 1993; Murakami et al.,

1995).

When the local approach to fracture analysis by FEM is used, the crucial problem is the mesh-

dependence and its regularization. This problem was examined by Murakami et al. (1995) when applied to

creep-fracture analysis by the use of an elastic-creep material with isotropic damage, the Kachanov-Rabotnov

theory, and a scalar Young’s modulus drop caused by damage, all incorporated into UMAT of the FEM code

ABAQUS. By the use of this simple model the assembly of fractured elements is considered as a crack, when the

stress in an element is released, if the scalar damage variable in the element reaches the critical value Dm and the

free surface is created. Hence, the crack width is governed by the size of the finite element, and it cannot develop

in the direction transverse to the crack length. Strong mesh-dependence of both the crack length growth and the

stress and damage concentration is observed. Possibilities of their regularization were examined in the frame of

the local approach by use of the non—local damage variable (average over a neighbourhood of the crack tip),

simplified stress limitation (ideal plasticity) and a modification of the damage evolution law.

In the present paper the regularized local approach to damage evolution prior to fracture (precritical

structure response) and the macrocrack propagation through the volume of the elastic-brittle metallic (steel)

structure (postcritical structure response), is applied. The damage anisotropy is accounted for by the application

of the Murakami and Ohno (1981) modified non-local second rank damage tensor, and the extended time—

dependent elastic-brittle constitutive model originated by Litewka (1985), (1989). A non—local damage tensor is

introduced in all constitutive equations, whereas the stress and strain tensors in the physical equations are treated

locally (a similar approach was presented by Bazant et al. (1987), where only those variables that control] strain

softening are subject to non—local treatment). The damage variable is averaged over a neighbourhood of a crack

tip by introducing a modified, non-local and limited stress measure for the purpose of a damage evolution

equation and a failure criterion. The failure criterion has the form of an isotropic scalar function of non-local

stress and damage tensors, when the damage evolution law by Litewka and Hult (1989) is generalized by the use

of an objective damage derivative to account for the rotation of the principal stress and the damage axes.

Consequently, the shear effect on damage is included (cf. Skrzypek et al., 1998a).

The material model is put into the UMAT of ABAQUS, and the numerical example of a 2D plane stress

structure is presented.

2 Mesh-dependence and Regularization Methods for the Local Approach to Fracture

A crack region is often understood as an assembly of elements in which the critical conditions of damage have

been reached. The stress in an element that undergoes fracture is usually totally released after failure, so the

stress on the free surface of the crack must vanish, and the crack cannot develop in the direction transverse to the

crack length. Therefore the crack width is governed by the element size, and can be unlimitedly reduced by the

mesh refinement. As a consequence of unlimited decrease of the predicted crack width the problem of damage

localization appears.

Two different procedures to model the macrocrack penetration through the volume of the structure were

proposed by Skrzypek et al. (1998b, 1999b). The first procedure is mostly the tension controlled crack length

growth, if the anticipated crack is formed along the structure fixed edge. When the failure criterion is satisfied in

a neighbouring (damaged) element, the appropriate kinematic boundary condition is released to allow for the

crack opening on the free surface produced. The element disconnected from the rigid edge is left in the mesh and

may carry the shear stress, although the tensile stress in the direction normal to the crack is released. Therefore

the crack width is not limited by the element size. The second procedure is a combined tension/shear controlled

crack branching mechanism that allows the crack to deviate from the primary direction along the fixed edge to

the interior. In this case the neighbouring element which is led to failure is fully removed, and a crack of the

width of the element is formed. Interaction of these two mechanisms, changing of the kinematic boundary

condition on the element face and/or fully removing the element that has come to failure, models an unstable

process of the structure under fracture, which leads to its fragmentation.

To mitigate the damage localization in the region preceding the crack tip several ways of regularization, referred

to the damage variable, were classified by Murakami et al. (1995). First in the frame of non-local formulation:
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I. non-local damage theory (Bazant, 1990; Bazant et al., 1987, 1988; Saanouni et al., 1989; Hall et al.,

1991),

whereas the other in the frame of local approach:

II. averaging the damage process in the material by incorporating non-local damage measure,

III. using a moderately low value for the critical damage in the failure criterions of type D S DC, (if scalar

damage variables are sufficient),

IV. mitigating stress sensitivity in the damage evolution equations.

Another problem in the local approach to fracture, when elastic-brittle structures are considered, is caused by the

stress singularity around the crack tip, and the following two procedures have been proposed (Murakami et al.,

1995) to obtain convergence of the solutions:

V. limitation of the stress level around the crack tip,

VI. relaxation of the stress concentration around the crack tip by incorporating plasticity to the elastic—

plastic-damage models (Hayakawa ct al., 1998).

In the present paper, where the elastic—brittle-damage model is used, the following regularization procedure is

employed: the damage variable is subjected to non—local treatment, by introducing a non-local and limited stress

measure in damage evolution equation and failure criterion. The stress concentration at the crack tip is limited

according to the following formulae

‚I Uij, ÖEQSÖU

>0“

(1)

where am is the Huber-Mises—Hencky equivalent stress, s is the stress deviator, and the factor k is determined

from the yield criterion.

Regularization of the local variation of the damage field D(x) is achieved by averaging a non-local stress

variable 8(X,Qd ) over the neighbourhood Qd (g) of x

jag-(WM)de (a)

man: 9" <2)

“JM’”

(i

where X, g, and Ei," denote a material particle, a particle in the neighbourhood Qd of x, and the local ( but

limited according to equation (1)) stress component of a particle 23, respectively. Symbol q) denotes the weight

function, which decreases with the distance from point X. The simplest case is when ¢(X,§)=1within a

neighbourhood of x, and vanishes outside. Then equation (2) provides mean values within specified domain (cf.

2

Mréz et al., 1999). In the present paper ¢(x,§)= exp[— J was incorporated (cf. Murakami et al.,

1995; Chaboche, 1999), where d and d* are respectively the distance between x and 2;, and the characteristic

distance on the scale of the material microstructurc, for example the grain size (Chaboche, 1999).

3 Basic Equations of Anisotropic Elasticity Coupled with Damage

As damage variable the second-rank damage tensor D* is applied, which in local formulation takes the form

3

D =Xpin, (an, (3)

'=1
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The principal values of D* are related to those representing the traditional Murakami—Ohno’s tensor D through

D" = Di e (0,1), D: e (0, eo) (4)

V

The objective damage rate tensor D corresponding to the rotation of principal stress axes from 04 to 05i +dm,

with time changing from t to t+dt, is obtained by the use of the Zaremba-Jaumann objective derivative (cf.

Skrzypek et al., 1998)

V .

D = D— DTs — STD (5)

where is the time derivative of the damage tensor, and S is the spin tensor.

/\ L)

The non-local non—objective damage rate D in current principal directions of the non-local stress tensor o- (see

equation (2) is calculated through the modified Litewka-Hult damage evolution equation (cf. Litewka et al.,

1989)

s.<

/\

. /\ A2 A2 /\ A,

D=C 1igrfl 8+1t717/7Tr ä + 772‘ riTr 0' :D a (6)
6E 2E

2E[1+ D1 J

Ö c ‘

Here C is a temperature-dependent material constant, s - the non-local stress deviator, and the modlfled stress

*

/\

tensor G is employed to account for the limited damage evolution under compression

‚4* /A‚\ r/ A

c =tc/>—§(\—c>, {6 [0,1] (7)

\ \

where the symbol< > denotes Macauley brackets, and g is a material constant used to represent unilateral

damage response, In the case when 4 = O no damage growth under compressive stresses is allowed (cf.

Litewka, 1985). On the other hand, g = 1 means the same material response in the damage growth for

compression and tension. In general, the parameter g should be determined from a tension/compression test (cf.

Murakami et al., 1997). In the present paper 4 = O is applied.

The non-local failure criterion is assumed as the three—parameter damage affected isotropic scalar

function of stress and damage tensors

A A* ‚A e 2 A2 A*

F 0',D =C1Tr26+C2[Trs] +C3Tr 0' :D —aä=0 (8)

where C1, C2, and C3 are material constants dependent on the state of damage growth process, and 0'u is the

ultimate strength of the undamaged material. Constants C1, C2, and C3 may be determined by applying equation

(8) to three different states of stress: to uniaxial tension in the two perpendicular principal damage directions,

and to equal biaxial tension in those directions (cf. Litewka et al., 1989).

It is usually assumed that failure occurs when at least one principal value of the damage tensor is equal to unity.

This leads to stress sensitivity of the damage evolution equation when the damage variable is close to its

maximum value 1.0 (cf. Murakami et al., 1995). According to the failure criterion (8) the onset of failure is

observed when the material yield stress, continuously decreasing due to the damage growth, becomes equal to

the stress actually applied. Equation (8), even if written in local stress and damage variables, leads to failure

354



when the principal damage tensor components reach their critical combination, for values usually considerably

less than unity. Hence, there is no need to additionally reduce the critical damage values as it was proposed by

Murakami et a1. (1995). However, the failure criterion (8) itself is stress sensitive and leads to immediate failure

when the equivalent stress at a crack tip exceeds the current yield stress for the damaged material. Therefore,

non—local limited stress and non-local damage variables are applied.

The stress—strain relations of elasticity are written here for the local stress and strain variables, whereas the time-

dependent fourth-rank anisotropy tensor Ä[D J is treated non-locally

A_1 A*

s=Ä [D J16 (9)

The representation of the elasticity tensor Ä}; reduced to the form linear in damage, was derived by Litewka

=k

/\

(1985). Introducing the extension to the non—local damage tensor D we obtain

* fit * =16
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E and vdenote Young’s modulus and Poisson’s ratio of the undamaged material. Hence, the following equation

of anisotropic elasticity coupled with damage is furnished

*

/\

D1v 1+v A* A*

a=—i Tro +7047“ czD+D zu 11E( )1 E [ j < )

2 1+D1

The matrix form of constitutive equations (5) - (11), written in local variables, has been given in the paper by

Skrzypek at al. (1998b).

4 Numerical Example for Mesh-dependence of the Non-regularized Solution

As a numerical example a cracked 2D structure subjected to in-plane uniform mechanical load is analysed

(Figure 1). The ratio between width 21; and the initial crack length 2a is b/a=3. (cf. also Murakami et al., 1988).
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Figure 1. The Geometry of the Problem, Loading and Mesh.
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The following dimensionless quantities have been considered: q: ci[rr-ri=0.096, Young’s modulus

au- m

E = 416.7 , Poisson’s ratio v=0.3, C = Cau -1[sj = 6.81 - lO6 , and au = 288[MPa]. The material data correspond

to carbon steel AISI at a temperature of 811 [K] (cf. Litewka, 1989). Due to the symmetry of the problem only

one quarter is subject to numerical analysis. The structure is discretized by the 2D first—order isoparametric plane

stress elements CPS4 and CPS3 (mesh I — see Figure 1).

The effect of element size on a process of damage growth and crack propagation was examined on three meshes

of the same topology but different densities (see Figure 2).

Without regularization, the dimensionless crack incubation periods t1 of meshes II and III, referred to the crack

incubation period of mesh I, are 0,062 and 0,002 respectively, whereas rupture times tf of those meshes, referred

to the rupture time of mesh 1, are 0,015 and 0,0012 respectively. The differences between the results indicate

very strong mesh size dependence of lifetime predictions. The pattern of macrocrack growth, on the other hand,

is dependent rather on the finite element shape, because a crack always extends from the element at the current

crack tip to the element that shares a segment with it. This results from the stress concentration at a crack tip.

a) meshI b) mesh II

 

Figure 2. Mesh Discretization and Cracks Patterns.

Hence, in the case of triangular elements the crack growth direction is limited to the direction perpendicular to

the initial crack, and left-and-upper direction. The mesh discretization in the region of element size change

restricts the crack development to the direction parallel to the initial crack, and to left-and-lower direction, so

there is a change of crack direction in that region (see Figure 2). Two other examples of mesh discretization:

using quadratic elements, and triangular ones but of orientation different from the meshes I, II and III, and the

corresponding crack patterns are shown in Figure 3.
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The

a) quadratic elements b) triangular elements

  
Figure 3. Effect of Element Size on Cracks Pattern.

evolution with time of the equivalent stress ( Figure 4a) in elements that constitute a macrocrack illustrates

the following features of the stress field in the process of numerical analysis of damage evolution and crack

propagation:

A)

B)

C)

D)

E)

stress redistribution from the most deteriorated area to the neighbouring elements (due to coupling with

damage in the physical equation (11)),

the avalanche character of the final stage of fracture,

the increase of the stress values at a crack tip with macrocrack development (due to effective structure width

reduction),

stress drop to zero in the failed element,

discontinuous stress increase in the element at the current crack tip (due to releasing the stress level in

previous element).

From Figure 4b) we can draw several conclusions referred to the damage field:

F)

a)

the critical damage values are less than 1.0, and they decrease with the stress increase at the crack tip,
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Figure 4. The Evolution in Time of a) Equivalent Stress and b) Maximum Principal Damage Component in the

G)

5

To

Elements along the Macrocrack (Mesh I).

in the element at the current crack tip the increase of damage rate can be observed (due to E)), followed by

the damage rate decrease (due to A)).

Effects of Regularization Technique

suppress the element size and shape effect on the solution the following numerical algorithm has been

applied: numerical calculations start with the elastic solution for a virgin material. Then the damage evolution
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process begins. The failure criterion (equation (8)) is checked at the beginning of each time increment, after the

non—local damage and stress tensors are transformed to the damage principal directions. In the case of non-

advanced damage the non—local stress and damage tensors are transformed to the principal directions of the non‘

local stress tensor. The non—objective (equation (6)) and the objective (equation (5)) derivatives of the non-local

damage tensor components are calculated next, and the current damage tensor in the new principal stress

directions is obtained. If, on the contrary, the failure criterion has already been satisfied, the macrocrack

modelling is activated, by reducing the stiffness in the cracked element to zero. Then the elastic response again

takes place, but after the elastic compliance matrix (according to equation ) has been updated to account for the

current damage and macrocrack development state.

Incorporating the regularization technique described above allows to mitigate the stress singularity at a crack tip.

Figure 5 shows the distributions of the equivalent stress at initial time to in the area around the initial crack tip.

Without any additional regularizations the elastic solution exhibits unlimited stress increase and localization with

the fineness of the mesh (Figure 5a), 5c)). The results of regularization on the initial equivalent stress field are

shown in Figures 5b) and 5d). Figure 6a) shows the function of the dimensionless equivalent stress (referred to

the yield stress of a virgin material) versus decreasing element size in element 1 (see Figure 2a)). The limitation

of stresses in a current element together with averaging the stress tensor components over the neighbourhood of

a current integration point lead to converging results that differ by no more than 8%. The convergence of the

equivalent stresses with mesh fineness results in improving the predictions of the crack incubation period. The

function of the dimensionless crack incubation period (referred to the crack incubation period of mesh I without

regularization) is shown in Figure 6b). The regularization described above also seems to mitigate the influence of

the element shape on a crack pattern (see Figure 7).

a) Mesh I, without Regularization, max (SEQ: 0.46 c“ b) Mesh I, after Regularization, max (SEQ: 0.27 cu
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Figure 5. Distribution of Equivalent Stress at Time to.
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Figure 7. Crack Pattern in Mesh I after Regularization.

Conclusions

The use of a non—local stress measure in the damage evolution equation, while local stress and strain

variables are considered in the physical equation, leads to convergence of time predictions with the fineness

of the mesh.

Proper selection of the characteristic distance d* is a crucial point of this non-local approach. Once d* is

established, there is also a problem of proper element size. As it can be seen from Figure 8, the

regularization has a negligible effect on the results if the linear size of the finite elements at a crack tip

becomes greater than the characteristic distance d*.
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Figure 8. Crack Incubation Period versus Characteristic Length (1* (Referred to the Linear Size of Finite

Element).
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Since the non-local damage measure allows to integrate defects over several finite elements, the minimal

finite element size is no longer restricted to the size of the Representative Volume Element. On the other

hand, the characteristic distance (1*, when correlated with the RVE size, enforces the use of very fine

meshes, where the elements around the crack tip are smaller than the Representative Volume Element for a

certain material.

The regularization technique described above seems to mitigate the dependence of the crack pattern on an

element shape, which results in different crack patterns in comparison to the basic solution (see Figure 7).

However, this problem needs further investigations.
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