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Self-Consistent Matricity Model
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In the recent past, composites with interpenetrating microstructures of mechanically strongly dlflerent phases

are of increasing importance as structural andfunctional materials in numerous industrial applicationfields. In

order to design such composites, it is thus important to develop methods for predicting their thermo-elastic-

plastic mechanical properties. In this paper, systematic analyses arepresentedfor the W/Cu system with respect

to modulus, thermal expansion coefficient, degree of interpenetration (matricity) and dependence of the plastic

behaviour with respect to volume fraction, matricity and thermal expansion mismatch of the phases. Besides

these global parameters thefrequency distributions of total strains as a measure ofdeformation in the phases is

obtained.

l Introduction

Composites consisting of phases with strongly different properties have the potential to be used in new

application fields as they comprise otherwise incompatible properties. While the deformation behaviour of

inclusion-type of microstructures has been successfully modelled in the past for brittle fiber or particulate

reinforced metal matrix composites (Zahl et al., 1994; Dong and Schmauder, 1996a) this was not achieved until

recently in the case of interpenetrating microstructurcs where both phases are connected throughout the material.

Such microstructures are typically observed in the composition range of 30+70% while inclusion type of

microstructures are typical for dilute systems with phase volume fractions between 0+30%. Specifically,

functionally graded materials can depict the full composition range in material transitions. As processing

techniques are nowadays available to design material transitions, experience in modelling of the full composition

range is still lacking. This paper is intended to bridge this gap in the case of W/Cu composites where the full

compositional range is available from a powder—metallurgical route (Jedamzik et al., 1997), such that comparison

in properties and predictions can be made.

2 Models

Three models are used for the simulation of the thermo-elastic-plastic materials properties of composites with

phases (1 and ß in this paper. In the case of an inclusion type of microstructure the self—consistent embedded cell

model is applied which is described in (1., 2., 12., 13., 19.). The embedded cell model has been introduced to

simulate the mechanical behaviour of composites with randomly distributed inclusions. The volume fraction of

the inclusions is the main parameter in the model. To take the matricity as a second microstructural parameter

into account, the self—consistent embedded cell model has been extended by a second self consistent embedded

cell model (Figure l). In this "matricity model" we are able to define the matricity of the model in the same

manner as the matricity is defined for a real microstructure: First the single phases are reduced to skeleton lines.

The lengths of the skeleton lines of the inclusions (Figure l; left:B, rightza) are zero as the inclusions are

spherical and are, therefore, reduced to a point in the process of obtaining the matricity of the phase.

The lengths of the skeleton lines Sa and Sp, in the matrices are given as the circumference of a circle with a

diameter which is obtained from the arithmetic average of the diameter of the embedded cell and the diameter of

the inclusion phase (Figure 1; left: Sa, right: SB). The diameters of the embedded cells are denominated as W1

and W2. The diameters of the inclusion part of the embedded cells depend on the volume fraction of the

inclusions and the corresponding factors W1 or W2. The matricity M can be calculated as a function of the sizes

of the embedded cells and the volume fraction of one of the two phases, as the volume fraction of the phases is

held constant in both parts of the matricity model.

As can be seen in Figure 1, the volume fractions of the phases as well as the diameters W1 and W2 of the

embedded cells are adjustable. To achieve a matricity Mi (i=0t, ß) in the model, the measured volume fraction of

the phases in the model is realized and the diameters W1 and W2 are calculated according to equation 1 (Leßle et
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Figure 1. Matricity—model (schematic) with Skeleton Lines to Adjust for the Measured

Parameter ,,Matricity“ in the Model via the Factors W1 and W2.
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al., 1998). If the geometrical boundary conditions are modelled at a distance of about 5 times the radius of the

embedded cell, they are of almost no influence on the model’s mechanical behaviour. If the boundary conditions

are kept remote the embedded cell can be modelled with the surrounding composite in different manners. As the

remote boundary conditions have almost no influence on the mechanical behaviour of the embedded cell it is

assumed that the continuum mechanical stress-strain state in the embedded cell is hardly influenced as well.

Taking this into account, a unit cell for a specific volume fraction can be used in each part of the matricity

model. Moreover, due to the virtual independency from remote boundaries, it is not necessary to model the

matricity as an absolute parameter of the FE-mesh. It is rather possible to introduce the matricity by adjusting

weighting factors W1 and W2 only in the evaluation of the results from the inclusion type geometries. As the

results have to be determined by an iterative procedure in about 3 to 5 iterations, the adjusting weighting factors

W1 and W2 must be introduced in the evaluation of each iteration step.

In principle, stress-strain curves of the two-phase composite are determined from the matricity model in the same

iterative manner as it is done for the simple self-consistent embedded cell model: In each increment the

components for stress and strain are determined. This is done by a weighted averaging of the stress and strain

values over all integration points of both embedded cells.

Interpenetrating microstructures where both phases can show percolation throughout the material are

characterized by the above introduced matricity parameter M with values between O and l describing the mutual

material circumscription of the phases in addition to their volume fractions. The matricity model is based on a

numerical scheme consisting of inclusions of a given volume fraction and with circular cross-section (3., 7., 9.,

10., l4.-16., 20.). The model in Figure 1 allows for the consideration of thermal residual stresses and can be used

to predict the elastic properties, the thermal expansion coefficient and the elastic-plastic stress-strain curves for

the different phase arrangements as well as to predict phase properties of the phases in the composite. For

comparison reasons the Tuchinskii model is introduced as second model which allows to predict upper and lower

bounds of the elastic modulus of a composite with interpenetrating microstructures by the following formulae

(Tuchinskii, 1983) where E, = Young’s modulus of phase i, f, = volume fraction of phase i (i=A, B;

C=composite).

(1)

 

E _

E? = (1 _ cf + {—3)}w lower bound (2)

EA EA c+(EB/EA)(l—c)

E —l

E_C = [ 2 l‘c 2+ 2 C ] upper bound (3)

A (l—c )+(EB/EA)c (l—c) +(EB/EA)(2—c)c

2

f1; = (3 - 2C) - C relation between volume fraction and geometric parameter c (4)
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In a third model by Pompe the calculation of the thermo-elastic constants is also based on the solution of an

inclusion problem (Kreher and Pompe, 1989). Due to their ellipsoidal shape the fields inside the inclusions are

homogeneous and can be determined analytically. Throughout this paper we assume the special case of spherical

inclusions. Interaction between the media can be considered through assumptions about the surrounding

material. This is often realized by the effective medium theory (EMA). For the mean stress and strain fields self—

consistency must be claimed leading to an implicit equation system which allows for determination of the

effective constants. The effective values for Young’s modulus and thermal expansion coefficient have been

determined numerically.

3 Results and Discussion

W/Cu compositions in the range of 3+75% Cu were produced by a sintering and infiltration method (Jedamzik et

al., 1997). The corresponding microstructures are presented in Figure 2. Besides the volume fraction, a second

parameter, the so-called matricity parameter M which represents the degree of mutual interpenetration and

fCu=O.O3 fCu=0.05 fCu=O.06 ch=0.09 fCu=0.17      

 

Figure 2. Microstructures and Matricities of Different W/Cu Composites.

circumvention of the phases and which was introduced by (Poech and Ruhr, 1993) is also given in the figure. In

the following, composites of two phases 0t and ß are considered. Matricity is then defined as the fraction of the

length of the skeleton lines of one phase, Sa, and the length of the skeleton lines of the participating phases

315



 

M0, = So, / (S0€ + SB) (5)

By definition, the sum of the matricities of all phases equals one

Ma + Mß = 1

To obtain the skeleton lines of a certain phase, this phase is selected within an image analysing system and the

detected structure is reduced to a typically non-connecting line maintaining the topology. In Figure 2 the

matricities have been determined for a graded W/Cu composite. The structure parameters, volume fraction f, and

matricity M, have been determined to be, e.g., MCu=0.08, 0.26, 0.45 and 0.72 for fCu=0.03, 0.21, 0.40 and 0.75,

respectively. It can be seen that although there exists a nearly linear relationship between the two parameters

(Figure 3) the slope is clearly less than 0.9. M is linearly related to the cluster parameter rm:

M = are, + b, a=0.4, b=0.3 (Appendix).
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Figure 3. Correlation between Volume Fraction and Matricity for Different W/Cu

Microstructures.

The experimental data of Young’s modulus were determined using a resonance method according to ASTM

C1259—94. For this purpose quasi-homogeneous rectangular bars of 0.4 mm thickness t, 4 mm width b and 22

mm length L were cut from the W/Cu sample using a wire saw. A piezoelectric transducer was attached to one
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Figure 4. E—Modulus for the Different W/Cu Microstructures.
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end of the bars and a magnetic pickup to the other end with a thin thread. The frequency F of the fundamental

flexure mode of the bars was determined by a computer-controlled frequency generator/lock-in amplifier

combination. The dynamic Young’s modulus E of each region was then calculated from the mass m and the

dimensions of the bars according to ASTM Designation C 1259-94 (21.)

E =0.9465-(m-F2 /b)(L3/I3)(1+6.585-t2 /L2) (7)

The elastic behaviour of the composite is represented in Figure 4 where the Young’s modulus is seen to vary

between those of the components at f=0 and f=100%. It is interesting to see that the predictions of the upper and

lower bounds from the Tuchinskii model are rather close to each other, while the moduli ofW and Cu differ by a

factor of 3.16. The experimental values fall into these bounds and the matricity model predictions are in the same

range. The experimental data are very well described by the Pompe model. The thermal expansion coefficient of

the composite as observed in the experiments obeys the rule of mixture (between ocw=4.7E-6.1/K and

ocCu=18.9E—06-l/K) in good approximation and so does the calculation when thermal stresses are taken into

account (Figure 5). The agreement between the simulation and the Pompe model is very good. Earlier results on

metal/ceramic composites have shown that the thermal expansion coefficient 0L is nearly independent on M

(Lefile, 1997).
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Figure 5. Thermal Expansion Coefficients of the W/Cu Microstructures.
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Compositions and According Matricities for the Different W/Cu Microstructures.
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The model predictions for the stress-strain curves of W/Cu (with the corresponding volume fractions and

matricities of the real composites) are depicted in Figure 6, where a strong variation in the mechanical behaviour

is seen for fcu = 0.4+0.7. The influence of residual stresses caused by cooling down the material from processing

to environmental temperature is also indicated in this figure. Obviously, no strong influence of the residual

stresses is observed. Nevertheless, the residual stress distribution can be predicted reliably in either phase, as

shown in (LeBle et al., 1998). Decoupling of the parameters (fCu=50%, M=variable) demonstrates that phase

arrangement is the parameter which actually controls the mechanical behaviour of the W/Cu composite (Figure

7).
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Figure 7. Calculated Influence of Matricity and Residual Stresses for W/Cu Composites.

Another interesting parameter to analyse is the frequency distribution of the strains in either phase (Figure 8 and

Figure 9) at a given global strain of, e.g., 5 % of the composite (with fCH=60 %, Mc„=0.64). Two main features

can be seen: First, the Cu phase carries most of the strain with an average value of ~ 7 % which is well above the

composite strain. And second, the strain values are widely distributed in the Cu phase (-1% + 19%) compared to

the W phase (average: 0,13%, range: 0.07+O.225%). This aspect is important with respect to considerations of

crack nucleation in the phases.
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Figure 8. Frequency Distribution of Total Strains in W Phase in W/Cu Composites at a

Global Strain of 5% (fCu = 60% and MCu = 0.64).
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Figure 9. Frequency Distribution of Total Strains in Cu Phase in W/Cu Composites at a

Global Strain of 5% (ch = 60% and MCu = 0.64).

4 Conclusions

The matricity model was applied to systematically predict the thermo-elastic-plastic material properties of a full

range of W/Cu compositions. Comparisons were made with experimental results on the thermo-elastic-plastic

properties and with the Tuchinskii model and Pompe model for elastic properties. The results in the case of

W/Cu (with one elastic and one elastic-plastic phase) can be summerized as follows:

— The expansion coefficient of the composite is not dependent on the matricity parameter and thus well

predicted by the linear rule of mixture. Residual stresses do have a minor influence on a.

— The elastic modulus is well predicted by the Tuchinskii model as well as by the matricity model and by the

Pompe model.

— The stress-strain curve is strongly influenced by volume fraction (in the range of fell = 30—70%) and by the

matricity parameter M. Again, small effects were found from residual stresses.

— While the W phase carries most of the stresses, the frequency distribution of total strains demonstrates that

the softer phase is strained to a level higher than the composite in average.

Appendix

Recently, Siegmund et a1. introduced the so—called cluster parameter ra which gives the relative number of

clusters NC(OL) of phase on in phase ß in an OL-B-composite ra=NC(OL)/(NC(0L)+NC(B)). In [Siegmund et 2:11., 1993]

this parameter was calculated for a number of artificial microstructures consisting of equally sized hexagons.

More recently, [LeBle et al., 1996] have measured the matricity parameter for the same microstructures. It was

found that M and rDc are linearly correlated. The superiority ofM versus r0. is due to a wide range and a simpler

determination of the matricity value [Leßle et al.. 1996].
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