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Chaotic Attitude Motion of a Class of Spacecraft on an Elliptic

Orbit
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In this paper, the chaotic planar attitude motion of a spacecraft on an elliptic orbit in the gravitational field

with air drag and internal damping is investigated. Based on the mathematical model of the spacecraft attitude

motion, the necessary condition for chaos to occur is established by Melnikov ’s method. A numerical example

is presented.

1 Introduction

Attitude dynamics of spacecraft is a research subject of great practical significance (Rimrott, 1989; Liu, 1995).

As chaos is widely and deeply investigated, much attention is also paid to chaotic attitude motion of spacecraft.

It not only provides a definite engineering approach for studying chaos, but also offers a new viewpoint for

designing spacecraft. It is shown that there exists chaotic attitude motion in some models of spacecraft, such as

spinning satellites in a circular orbit (Guran et al., 1991), gyrostat satellites in the gravitational field (Tong and

Rimrott, 1993; Tong et al., 1995), and tethered satellites (Peng and Lin, 1996). However, the most often studied

case is the planar libration of non-spinning spacecraft on an elliptic orbit in the gravitational field. Gulyer et a1.

(1989) researched the case without damping and found period—doubling bifurcations to chaos. In the same year

Seisl and Steindl (1989) presented the necessary condition for chaos to occur for the case with atmospheric

resistance. Tong and Rimrott (1991) numerically studied chaotic behaviour for the case with internal damping,

Beletsky (1995) and Beletsky et a1. (1996) have studied chaotic attitude motion of satellites in the magnetic

field of the earth, in the gravitational field of two centers, or in solar wind. The present paper deals with the

case of both atmospheric resistance and internal damping. The Melnikov method is applied to present analytic

criteria to determine whether chaotic attitude motion might occur. Chaos is numerically demonstrated by the

time history and the phase trajectory.

2 Differential Equation of Spacecraft Attitude Motion

   

Figure 1 Planar Motion of Spacecraft in an Elliptic Orbit

As Shown in Figure 1, an arbitrarily shaped spacecraft, whose principal inertia moments are A, B and C, moves

in an elliptic orbit with one principal axis 2: normal to the orbital plane XY. Without loss of generality, suppose

that B>A. Note that (p is the libration angle in the orbital plane as measured from the local vertical, v is the

position angle of the spacecraft in its orbit as measured from the perifocus, r is the distance between the

spacecraft mass center and the earth mass center, it is the gravitational attraction constant of the earth.

Assume that the internal damping and the atmospheric resistance are proportional to the spacecraft‘s angular
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velocity and the square of angular velocity respectivelyi whose coefficients are 7 and c2 Considering the z—

cornponent of Euler's equations (Rimrott, 1989; Liu, 1995) leads to

d1 d1 (11 r3 dr d1

: 3—”(B—A)cosq)(~sincp) — c-C(@)- "yCd—(p (1)

Orbital motion and attitude motion are assumed to be decoupled. Thus one has the Kepler motion (Rimrotti

1989; Liu, 1995)

dv _ ß _ p

— — — r « ——— (2)
dt r2 l+ecosv

where p is the semi—parameter of the orbit, and e is the orbit eccentricity. Introducing the true anomaly v as

the independent variable, substituting equations (2) into equation (1) and noting
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one obtains
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which is the differential equation desired.

3 Chaotic Attitude Motion of the Spacecraft

Since 6, c, Y are all small, let 6 : 861,C = 8C1,'Y : €71 (O< E << l). Neglecting higher order terms of e in

equation (5) leads to an integrable Hamiltonian system under small perturbations.

(”p -+ Ksin2<p = e[2e1 sinv(1 +('p) + eIKcosVsian) — €191)2 — 716p] (6)

For 8 2 O „ the unperturbed planar Hamiltonian system (6) has first integrals of motion

1 i 2 . 3

-2—cp +Ksm tsz (7)

When H = K the integrable system (7) has two hyperbolic saddle points O), whose unstable manifolds

and stable manifolds constitute a heteroclinic cycle. The heteroclinic orbits l“t starting at (0, i 42K) are

((pi(v), (um) : <iarcsin(th( 2Kv))> ifisech< 2KV)) (8)

For e i 0, if the Melnikov functions

+00

Mi(v0) = “2e1 sin(v + v0)(l + Cpi(v))+ echos(v + vo)sin2cpi(v) — clc’pflv) — ylt'pi(v)(pi(v)]dv (9)

-m
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have a simple zero, then in the Poincare map of equation (6) there exists a transverse heteroclinic cycle

(Guckenheimer and Holmes, 1983). Substituting equations (8) into equations (9), one evaluates the Melnikov

functions for the heteroclinic orbits F+ and T“ to yield

       

1: TE n . v0

M V : —e 4sech— + 3csch srn— — ncK—47 K (10)

+1 0) 2 1( 2J2K 2J2K1 J2K 1 1

n TE 7: v
M_ v = —e —4seCh———- + 3csch sin—O + ncK—4Y K (11)
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Letting

2K£1+£lj

R+(K,l) = n 7‘ C n (12)
c

4sech + 3csch
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R_(K,l = T” (13)

c 1r n
4sech — 3csch
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then from equations (10), (12), and equations (11), (13), one separately knows that if

5 > max{R+(K‚1),R‘(K,l)} (14)
C C C

both M+ (v0) and M_ (v0) have simple zeros. Thus there exist transverse heteroclinics in the Poincare map of

the system (6). The existence of such cycles implies that Smales horseshoe occurs and chaotic behavior may

result.

4 A Numerical Example

For K = 0.75, Y = 0.05, c = 0.04, equation (12) and equation (13) respectively yield

R+ 2100635 and R— = 3.44505. Hence the condition (14) becomes 6 > 0.137802. Let 6 = 0.14. In this case,

chaotic motion occurs. The chaotic time history and the chaotic phase trajectory are separately shown in Figure

2 and Figure 3.
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Figure 2. The Chaotic Time History Figure 3. The Chaotic Phase Trajectory

5 Conclusion

The planar libration of nonaspinning spacecraft on an elliptic orbit in the gravitational field with both

atmospheric resistance and internal damping is described by the differential equation (4). The necessary

condition for chaos to occur in equation (4) is equation (14). If the condition is satisfied, the time history and

the phase numerically demonstrate the existence of chaos,
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