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Homogenization Method in the Theory of Corrugated Plates

I. V. Andrianov, A. A. Diskovsky, E. G. Kholod

The analysis of corrugated plates and shells is of significant practical value: a lot of such problems arise in

machine design, civil engineering, etc. The problems mentioned are usually solved using numerical methods

such as finite element procedures. Nevertheless a numerical approach does not adequately fit the requirements

of optimal structural design. Then approximate analytical expressions, accurate enough, will be of great

practical advantage for these needs.

1 Introduction

Corrugated plates and shells are characterised by partial differential equations with rapidly varying coefficients,

and their stress—strain state may be represented as sums of slowly and rapidly varying parts (Andreeva, 1981;

Gibson, 1980; Reichhard, 1995). In many physical problems, some variables vary indeed slowly, others fast. It

is natural to pose the question whether it is appropriate to have first studied a global structure under

consideration, digressing from it’s local distinctive features, and then to investigate the system locally. It is the

homogenization method which is aimed at a division of the fast and slow components of the solution. Without

going into details of the method - the more because it has at present a lot of modifications — it will be noted only

that it involves the introduction of ,,slow“ (macroscopic) and ,,rapid“ (microscopic) variables whose equations

are separated and can be solved independently, or sequentially. This method was developed for and has gained

wide use in celestial mechanics and in nonlinear oscillation theory. At present, the method is used to great

advantage for solving variable-coefficient partial differential equations in such disciplines as the theory of

composites (Bakhvalov and Panasenko, 1989; Sanchez-Palencia, 1980) or of the theory of reinforced,

perforated, etc. shells (Bensoussan et al., 1978; Lions, 1982; Kalamkarov, 1992; Andrianov and Manevich,

1983; Andrianov et al., 1985; Andrianov et al., 1992).

An originally nonhomogeneous medium or structure is reduced to a homogeneous one (generally speaking to

an anisotropic one) with some effective characteristics. The homogenization method allows not only to obtain

effective characteristics but also to investigate the nonhomogeneous distribution of mechanical stresses in

different materials and structures, which is of great significance for evaluating their strength. The approach

presented below fills the substantial gap between numerical methods of thin shell theory, which methods lack

generality and the possibility to grasp the common features of behaviour of structures concerned, and

approximate design schemes, based on heuristic hypotheses. Methods proposed are wide-ranging in application

and lead to simple and clear design formulas, useful for practical analyses. The aforesaid opens new prospects

for the analysis of the new important problems arising in modern engineering and not yet solved fully and

effectively enough.

Readers will probably ask the question: are asymptotic methods of any practical use at all when there are

computers? ls it not simple to have programmed an original problem and have solved it using the universal

numerical solutions available, for example, finite element procedures. The answer may be like this: Firstly the

asymptotic methods are very useful in the preliminary stage of solving a problem even in cases where the

eventual aim is to obtain numerical results. The asymptotic analysis makes it possible to choose the best

numerical method and gain an understanding of a vast body of numerical material. often not properly arranged.

Secondly the asymptotic methods are especially effective in those regions of parameter values where machine

computations are faced with serious difficulties.

Laplace used to say, not without reason, that the asymptotic methods are ,,very accurate, therefore they are

needed“. Moreover, the possibility exists of developing such algorithms wherein smooth portions of solutions

are obtained numerically, and the asymptotic approaches are applied to those parameter value regions where

these solutions change drastically, say, within boundary layers. Therefore, it would be more proper to consider

the asymptotic and numerical methods not as competing, but as complementary.
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The homogenization theory has been developed recently by many authors (Bakhvalov and Panasenko, 1989;

Sanchez-Palencia, 1980; Bensoussan et 211., 1978; Lions, 1982; Kalamkarov, 1992). The main problem in this

field is the solving of the so-called cell (or local) problem. This problem is usually treated by numerical

methods. We have used the asymptotic method for solving the cell problem and have constructed a special

approach in this work. The work covers the following problems: the bending of circular and rectangular plates

with periodic corrugations, and the eigenvalue problem for the circular plate. The execution of the above

mentioned program turned out to be an extremely difficult task. We were faced with some difficulties of

principle. The matter is that initial equations were written for the middle surface, but homogenized equations

must be written for the middle plane. For overcoming this drawback we used projected initial equations on the

middle plane.

2 Radially Axisymmetric Corrugated Circular Plate

First of all we shall formulate the basic equations describing a corrugated circular plate in a form suitable for

later homogenization. The problem ist not a trivial one since the geometry of the corrugated plate is

complicated. Projecting into the middle plane, equilibrium equations may be written in the form

d
$0M) - N2 : rq1

d

EUQI) = mg (1)

d

Physical and geometrical relations in projecting into the middle plane are

N

%BQL z B(e1 +ve2) N2 : BA(82 +vs1)

M1 *Z—Nl I D(X1+VX2) M2 ‘1N2 : D062 +VX1) (2)

1 du dw Lt
: — ——+ —-— : _

81 A2 (air ß)er 82 r

Z 11 1(fl _ fl] _ aptly. _ fl)
X1 Adr A2 dr dr X2 _ rAz dr dr

Boundary conditions may be formalised as follows (plate clamped):

dw

uzwz—

dr

= 0 for r = rO,R (3)

The study of such problems is important from a theoretical as well as a numerical point of view. Because of the

complicated structure of corrugated plate, any kind of calculation is difficult to perform. So. we would like to

.,approximate“ the given problem by a ,Jlomogenized“ problem. By the method of asymptotic development, the

problem on a periodically corrugated plate is reduced to solving problems in the ,,basic cell“ for a plate without

corrugations. The method used here is a variant of the multiscaling technique as used in the books by

Bensoussan et al., (1978) (see also Bakhvalov and Panasenko, 1989) . We consider then n 21 and introduce

new ,,quick“ variables i = nr . Then
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(4)

The solution of the boundary value problems (1) to (3) we represent in the form of formal expansions

Ni 2 N}0)(r,§) + eNim(r,§) + i = 12

M- = Mi<0><na> + Mm) +

Qi = Q50)(r.&) + eQ51)(r.:) + <5)

u = 14(0)(r,§) + 814(1)(r,§) +

w = w(0)(r,§) + 82w(1)(r,§) +

Changeability period I 2 ER in respect to variable x for function with index (j), j = l, 2, is admitted.

Substituting series (5) into boundary value problem (1) to (3) and splitting it with respect to powers of e , one

obtains the recurrent sequence ofboundary value problems

       

(0) (o) (0)
8N1 = 0 an : O 5M} : 0

a: at 3€

awf") _ 8141(0) _

aé _ O 8€ — 0 (6)

„3an ö (0) (o)_ Ble ö (o) _

I 8g +§(rN1 )— N2 — rq1 r? +Er—(rQ1 ) — rq2

r—aMlo) +—a—-(rM(O)) _ M(0)— do): 0 (7)
at, ar 1 2 1

8140) au“) N50) _1 12z2

a§+ar'k1Eh ‚(I—A +7

(8)

am“ + özwm) _ M50) D _ E123

8&2 ar2 _ 9 D1 1 _ 12

(0)
: Ehjgum) MEG) : lel (9)

I”

(1)

N51) : Ehéum M2“) = lelag—g (10)
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(0)

„(0) = w“) dw = 0 (11)

 

dr

for r = rU,R

(1)

„(1) z wo) 2 dw z 0 (12>

dr

It can be easily shown that

N1” = NW) Qt” = 91%) M1” = M100)

141(0) = u§0)(r) wfo) = wfo)(r) (13)

We consider the averaging operator defined upon the l—periodic function @(é)

m = [qm] = —j<p(§)d: (14)

The following is easily obtained from equations (7) and (8) by applying the averaging operator defined by

equation (14):

      

d d

EVA/1(0)) ” ’”<N2(O)) = "11(611) 217(VQ1(0)) : ""(Q2)

S—(erm) — m(M£0)) — Q50) 2 O
r

)
(0) Z Eh dam M(0) 2 D1 d2w(0 15

N1 m(k1) dr 1 m(A) dr2 ( )

(0)

NS” = Eh MAM“) M50) = D1m(k1)
‘ r dr

(0)

14(0) = 141(0) 2 dz" = O for r = rÜ,R

The homogenized boundary value problem (15) coincides with relations, which are obtained on the basis of

physical assumptions (Andreeva, 1981). Otherwiese, equations (7) to (12) give us the possibility to obtain not

only the homogenized boundary problem, but rapid oscillation terms of the solution too. Using equations (7) to

(10) and taking into account equations (15) one obtains

     

3N0) a (1)
rTä— : r[q1——m(q1)] + N§O)—m(N2(O)) I“??? Z Q2 ‘ m(‘12)

(1)
8M 1

~32; =71Mé°>-m(Mé”)1
814(1) N50) özwm MiG)a}; = [k1 —m(k1)] Eh 8&2 : [A—m(A)] D

(i) u (1) aw“)N2 = EhA-r— M2 = D1(k1 ’m(k1)) 8g
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Then we can obtain displacements, forces and moments in the original corrugated plate using formulas

 

Mr : u+ßw w" 2 7w+ßu N]: Z N1+ßQ1

A A A

N2
Noz—A— MrZMl—ZN) MOZMl—Zjvg

3 Numerical Results and Error Estimation

Now we examine the accuracy of our solution. Let us consider a clamped radially corrugated circular plate with

a rigid central disk of radius r00 loaded by a uniformly distributed pressure q . Then

z = Hsin [n(r — r00

We use the following geometrical and physical parameters:

R = 28.3-10‘3m r0 z 1.9.10‘3m h : 0.2241073m H = 0.75.10-3m

E =10‘1N/m2 q 210—8N/m2 v = 0.33 n : 4

Parameter 8 equals 1/4, representing a bad case for our method (this ,,s1nall“ parameter is obviously not very

small)‘ The computed bending moments and stresses are shown in Figures 1 to 6.

The results, obtained by the numerical method (Bideimait 1977) are presented by curve l, our results by curve

2. The discrepancy of asymptotic and numerical results for bending moments does not exceed 10 % which

confirms an acceptable accuracy of the method presented.
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Figure 1. Circle Corrugated Plate Figure 2. Equivalent Smooth Circle Plate
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Figure 3. Stress Nr in Circle Corrugated Plate Figure 4. Stress MD in Circle Corrugated Plate
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Figure 5. Moment Mr in Circle Corrugated Plate Figure 6. Moment M q, in Circle Corrugated Plate

4 Eigenvalue Problem for Corrugated Plate

Using the notations introduced above we consider the subsequent eigenvalue problem, with

q1 = 0 and q2 = phcozwZ in equations (1). Then for the modified equations (1) we may formulate boundary

conditions (2). We represent moments and forces as in equation (5), and eigenvalue 0) and eigenfunction w in

the following form:

wZ : [w0(r) + n‘2w0(r) + [n‘2w1(r,§) + n“4w2(r,§)

(17)

002 = coä + n‘sz +...

Substituting expansions (5) and (17) into equations (1) and (2) and boundary conditions (3) and splitting the

results according to the powers of e , one obtains a recurrent systems of eigenvalue problems. The first step of

solving is the same as that above.

The homogenised eigenvalue problem may be obtained by applying the averaging operator defined by equation

(14)

D0[w0,rrrr + (r—lw0,rr)’r ‘ k1k2(r-2w0‚r)’r] ‘ mgphkizwo z 0 (18)

To this equation belong the homogenised boundary conditions (11). For the ,,slow“ function w(r) and the first-

order term in the frequency expansion one obtains the equation

wm‚„.„ +(r‘1wm‚„)„ +(k1k2r’2wo1„)„ — coéphkaa‘wm = kir'mm + wéphki Dar—112m + mfphkaalwo

where

LlÜ) : [JL3|:J16(k4)d§}€](r*lw0,r)flr + [k4J-Ad§](r—1W0,n + V2r—2W0,r)
‚r

Conditions of secular term absence (Andrianov et al., 1992) produce the expressions
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R R

— DOJ r'1L1(r)dr + (nan/z] r_1L2(r)dr

m12 = r” R r0 (19)

k1“- wädr

’0

For shallow corrugations, formula (19) may be reduced to a more simplified form

5 Rectangular Plate

Only the final results of an asymptotic analysis are shown here. The governing equilibrium equations for a

rectangular corrugated plate may be obtained as follows:

Nx,x + Nyx,y = _qx ny,x + Ny‚y : —qy

Qx‚x + Qy‚y = _qZ

My‚y + Mxy,x + Qy = zqy Mx‚x + Myx‚y + Qx : qu

Let us introduce the expansions

Nx = En‘iNAxéy) Ny = Zn’iNnyÄJ)

i=0 i:()

(21)

NX : (x,§ + by) = Nx(x,§,y) ä = "X

Substituting expansion (21) into system (20) and splitting it with respect to powers of 8, one obtains cell

boundary problems for the whole domain

Nx0,E_ Z nyog = Qx0,E_ = Mx0,§ = Mxy0,§ I 0 (22)

Nng + Nx0,x + Nyx0,y : —qx nylé + ny0,x + Ny0‚y = —qy

Qng + Qx0‚x + Qy0‚y : ‘42

(23)

Mxl,E_ + Mx0,x + Myx0‚y + QxO Z 0 MxyLE' + Mxy0‚x + My0,y + QyO : 0

Mx2,§ + Mxl,x + Mnyy + Qxl : qu Mxy2,E_ + Mxy1‚x + My1,y + le : qu

From equations (22) we conclude that
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NxO = Nx0(x’y) NxyO

MxO : Mx0(x’y) M

ll ny0(x‚ y) on = onO‘J’)

Mxy0(x’y)xyO

Homogenized equations can be easily obtained by applying the averaging operator

Nx0‚x + (Nyx0)'y = —äx ny0,x + (A7310)?y : —äy

‚.vy Z
Mx0‚xx + 2H0,”- + (Myo) ~ (24)

Mxoyx + (Myxoly + on = 0 MW“! + (Myoh + Qyo z

where

(.T.) = 19—1 j (---)dx H0 : 0,5[Mxy0 + MM]

Now let us represent displacements w, u, o as sums of ,,bending“ (index f ) and ,,stretch“ (index s )

components

u“ = Itfléyxy) + n'llti’(§X,,Y) + “f = ”_1’40f(§,x’}’) + n‘zufiäxw) +

WS

= n'1w8(§,x,y) + n'zwf(§,x,y) + wf = w{(§,x,y) + n‘zwfir + (25)

z mm + Mumm) +
Df : n"1ug(§)x,y) + n"zo{(§,x,y) +

where

n5 = of = nzwfy z4f(‘§)((§+b)yx,Y) = Mfmfi’x’y)

o{(‘g)((§+b),x,y) = u(§,x,y) wi ((§+b),x,y) = wl- (§,x,y)

The cell problems have been solved on the basis of the approach presented above. Then one can express

projections of moments and stresses upon the projection of displacement

NX0 = Ehk;1 wax +14; +vu" . N = EhA 1)“ +k‘1A‘1 u" +14%
. ‚ä Oty yO 0,y 4 0.x 1,9

_1 —1
Mx0 : DOA (wgfl + wag: + vwäyy> MyU = D0k4[w({.yy + VA (wélx + Wig:

(26)

NW0 = Git-(ugly +1)ng Wig) NWU = GA(u3y +05% Mag)

Mxy0 : D1k5(w{_’gy +ngy) MM = le6(w{‚g +w({xy) MM 2 D1k5(w{éy +wfxy)

where

k5 = A‘1[1 + 12(z/h)2] k6 = A‘2k5 D1 = D(1—v) D0 = Eh3/12
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One obtains from equations (26)

uf = U<k3kf1 —1)d§](u5yx + way) + uf0(x,y)

of = U(Ak2_1—1)d§](u5,y + veg”) + ufo(x,y)

wgiy = (121-21))‘1 _1]d§} waxy + wfl),y(x,y)

wzf =(Ak2'1—1)a'§] (wan + vwofw) + w{0(x,y)

(27)

Taking into account equations (26), the expressions for stresses Nxo and Nxyo and moments

Mx0 and Mxyo may be reduced to the form

N):0 = Ehk;1(ug‚x + way) nyo = th;1(u5‚y + ugx)

(28)

_ Gh3 ~_
Mxo z D0k21(w({„ + vwgyy) Myyo = Tk5 lwofxy

Equations for uä , v5, wä have been obtained on the basis of the approach presented above

Eh[u5f„ + (v +k7)uo‚xy + k7ugfyy] = —k1?jx

mpg/Quayy + (v +k7)ugny + k7ugfl] = —k151y (29)

D0[w({„+ (2v+k2k8GE‘1)w{‚xm + k1k2w5fm] = k2äz

where

_ le _ ~—i ~—1~
k7 _ kZE k8 _ [k5 ](1+ k3 k6)

The homogenized boundary value problem (29) coincides with relations, which were obtained on the basis of

physical assumptions (Andreeva, 1981) (except the twisting moment). Otherwise, equations (27) give us the

possibility to obtain not only the homogenized boundary problem, but rapid oscillation terms of the solutions as

well. Using equations (29) and taking into account equations (26) to (28) one obtains

H

Nng = (Nny—Nyxo),y+ (jig—61x ny1,E_ z (NyO—Nyo)yy+ äy—qy

Mxlé : (AZny _ Myx0))y

Nyl = EhA(\>fy —nzwäy) Myl = Dokswfiyy Myyl = D(1—v)k8(wä_gv —w{f„)

As a numerical example let us consider the bending of a rectangular plate simply supported along edges x = O,

l), and clamped along edges y = ib/4, under its own gravity with z = 12hsin(fll:—x—); v = 0.3.

The results obtained by the asymptotic method are presented in Figures 7, 8 (here Y is specific gravity).
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Symbols

initial radial displacement

w initial normal displacement

u, w projecting of displacements on the middle plane

v Poisson’s ratio

E modulus of elasticity

B = Eh/(l-v)

D = Eh3/(12(1-vz))

n number of corrugations

81, 82 membrane deformations

£12 shear deformation

11, lg, In projection of deformations on the middle plane

90, x2 curvatures

N1 (N2) membrane stress

M1 (M2) bending moment

H torsion moment

Q1 (Q2) shearing force

ql normal load

([2 radial load

qr (qy) tangential load in x (y) direction

a = l/n

r polar radius

z(r) function defining corrugation geometry

h plate thickness

A = (1 + b)

a, b lengths of rectangular plate sides

I time

p density of plate material

a) frequency
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