
TECHNISCHE MECHANIK, Band 18,Hef| 2, (1998), 135-139

Manuskripleingang: 16. September 1997

Buckling of Spherical Shells under Concentrated Load

and Internal Pressure

S.M.Bauer, P.E.Tovstik

Stability of a complete spherical shell under concentrated load was first considered by D.Bushnell (1967)

by means of a finite diflerence method. In the present paper the effect of the internal pressure on the

critical value of a concentrated load is studied by means of a combination of asymptotic and numerical

methods.

1 The Equation of the Axisyrumetric Deformation

We start by examining the pre—buckling axisymmetric stress-strain state of a spherical shell. Let the shell

with radius R be subjected to the concentrained load P applied at two poles 90 = 0, 60 = 7r, where 00 is

the angle between the shell normal and the axis of symmetry (see Figure 1), and to the internal pressure

Pn.

 

Figure 1. Sperical Shell

We use the dimensionless system of equations (Tovstik, 1996).
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Here V and U are the projections of the stress resultants onto the axial and onto the normal to its

directions, correspondingly,

T1:Uc056+Vsin6 leUsinQ—Vcosd
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where f) is the angle between the shell normal and the axis of symmetry after deformation, ‚um and ‚usg

are the tensile deformations of the meridian and of the parallel, Ml and M2 are the stress couples, h

is the shell thickness, 1/ is the Poisson ratio, 11 > 0 is a small parameter, B is the distance between the

point in the neutral surface and the axis of symmetry.

Dimensionless variables in equations (1) are related to the corresponding dimensional variables (marked

by bars) as

— 2 “ 2 — 3 Ell/‘2
U z UEhu V : VEh/L M7; : MiEhRM p.n : p—E—

Firstly, we study the dependence of axisymmetric deformation of the shell on the applied load P. It is

clear that the large deformations occur at the neigbourhood of the points where the load is applied. We

study only the neigbourhood of the point 60 : 0. From the first of equations (1) we get

C p60

V 2 3 + 7 + 0(93) where P : 27TREh/L2C (2)
0

in that neigbourhood.

System (1) contains the small parameter ‚u, at the derivatives. Therefore we can use asymptotic method.

We rescale the variables

7rEh3c
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By taking into consideration formulas (2) and and by expanding the trigonomical functions, system

(1) is transformed with error of the order [12 into two nonlinear equations of the second order.

/
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The study of a system similar to equations (4) is reported in Shilkrut (1974).

2 Integration of System (4)

For an arbitrary load parameter c < O we seek a solution of system (4) which satisfies the following

conditions

1) limited at the point where the concentrated load is applied ,

uzw:0 when 5:0 (5)

ii) which turns into the membrane solution when we go away from the domain of large deflections

wag u—>E+I_’—5 as g—aoo (6)
g 2

In order to get such a solution, we construct its asymptotic expansion in the neighbourhood of the point

where the load is applied f : 0 and in a domain which is far away.

Taking into account conditions (5) and (6) we get as f —> O

wd=—;ba+0&+0@ma> Mv=0a+owm§e (n

136



andaséaoo,

 

if lpl < 4 then
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and if (p) > 4 then
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Both expansions depend on two unknown constants Ci, i : 1, 2, 3, 4. Using the condition that these two

solutions (Lil—ME) and w(+)(f) , u(—)(€) and u(+)({) (and their derivatives) should be equal at some

intermediate point f : 5*, the constants may be evaluated numerically.

After determination of the constants Ci, using expansions (7) and (8) or (8’) as boundary conditions,

we can get the general solution of system (4).

The plot of the deflection wo at the pole vs the load parameter c for some values of internal pressure p

is shown in Figure 2.

  

Figure 2. The Deflection at the Pole vs the Load Parameter

3 Equations of Axisymmetric State Bifurcation

We search the adjacent nonaxisymmetric equilibrium mode with m waves in the circurmferential direction

in the form

w(€‚ w) = 10(6) C03lm90l

In order to construct the adjacent equillibrium mode we use the Donnell system of equations for shallow

shells. After separation of variables and introduction of the dimensionless variables this system may be

written as

AAw—Atw—Aké :0 AAQ+Akw20

In equations (9) the quantities 10(6) and <I>(f) are the additional displacement and the stress function,

and the differential operators A, Ak and A1, are given by formulas

Aw I {"2 [((fw') — 171211)]

Akw 2: 6—2 [€(fk211)')' — m2k'1'm] (10)

Alu) : {’2[{({t1w')' — 771215210]
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where (1:12) are the curvatures of the neutral surface after deformation, t, are the main prebuckling

stresses.

4 Integration of System (9)

Taking into account relations (11) and expansions (7) we can construct asymptotic expansions of four

linearly independent solutions of system (9) in the neighbourhood of the point where the load is applied

6 : O and in the domain which is far away (é : oo).

These solutions should be limited at the point where the concentrated load is applied , {wl’h <I>(“)} ——> 0

as f ——> O.
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where a, = 0071 — 1)/[16(m + 1)]. T0 construct the expansions as E ——> oo we can take

2/) 2 g, u 2 c/f + pf/Z. Then in equations (9)
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and the solutions of system (9) satisfying the conditions of damping {w(+), <I>(+)} ——> 0 as 5 —> 00, have

the form

mg) : ÜNZeÄg} (PET) : ÜMÄgZeÄä'}

wg“ : 3{Ze’\€} (II?) : J{)\2Z€’\€} Z_ i +0
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win-L) : O (fivaZ) (1)5179 : fvm + O (67m4)

here /\ is the same as in equations

The axisymmetric state bifurcation takes place for load parameter c, if there exist eight nonzero constants

Cl ), Cl ‘ ), i : 1, 2, 3, 4, such that at some intermediate point f : 5* the functions

4 4

w(’) :ZC;7)w57) and 21,1(+):ZC§+)/w§+)

i=1 i=1

4 4

<I>H 2205444.” and <I><+>}:ZC<+><I><+)

i=1 1'21

(and their three derivatives) are equal. The smallest (by the wave number m) load parameter |c| core—

sponds to the critical value of concentrated load.

5 Results

In Table the values of the load parameter c are given for the different values of the internal pressure p

and of the wave numbers m.



 

p:0 p:1 p:3 p:5

—10.876 -31.374 -82.437 -107.121

- 10.834 —27.624 -64.127 -94.632

-11.871 -29.992 -64.941 —93.606

-13.094 -33.582 —69.356 -96.206

—14.339 -37.774 -75.007 -100.111
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Table 1. Load Parameter c as Function of Internal Pressure p and Wave Number m

For the case when the internal pressure is equal to zero the results agree well with those obtained by

Bushnell (1967). The smallest parameter of load |c| coresponds to the three waves mode. It is natural

that the value of critical concentrated load increases with the internal pressure. When p < 3.56 the

smallest load parameter [0| coresponds to the three waves mode, when p = 3.56 the load parameter is

the same for the three waves mode and for the four waves mode. if p > 3.56 the smallest load parameter

|c| coresponds to the four waves mode.

It is interesting to note that for different values of internal pressure the sizes of the large deformation

zones are almost equal. The dent halfangle is approximately equal to

6 h

90* = 6/" Z a (12)

Let be 1/ = 0.3. For h/R : 0.02 formula (12) gives 60... : 27”, and for h/R = 0.05 it gives 90* : 42".
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