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On the Calculation of Finite Plastic Strains in Shell Intersections

with Finite Elements

R. Eberlein, P. Wriggers

The paper presents an appropriate parameterization concept (5/6—parameter) for the modelling of shell

intersections. In addition to it, the classical displacement based 6~parameter concept is introduced. The

algorithmic treatment of finite plastic strains is outlined with. respect to a general S’vD material formu-

lation that underlies the 6—parameter model. Furthermore, special aspects for its implementation into

the proposed 5/6~parameter shell element are addressed. The discussion of numerical examples is split

into two parts. Atfirst, a purely elastic emample shows the validity of the 5/67parameter concept for the

calculation of shell intersections. Hereby, the deficiencies of the 6-—parameter model are outlined. The

second example investigates the warping deformations of a cantilever beam made out of a commercial

steel channel for purely elastic as well as elastic plastic material behavior.

1 Introduction

The calculation of finite plastic strains in shells has been a major task for many researchers during recent

years. A large variety of finite element formulations for shells has been presented in literature. For a

current overview refer to Eberlein (1997). Within this context the discussion of different parameterization

concepts was of special interest. The consitutive modelling, however, has successively been simplified to

a standard description of 37D material behavior. That fact holds for both, hyperelastic and finite plastic

strains. Yet, in terms of shells with plane stress assumption, some further aspects have to be discussed

in addition.

For shell intersections one has to think of non—smooth shell~like structures. A mathematical definition

is provided by the fact that there does not have to exist an unique normal vector in any point of the

shell midsurface, e.g. steel channels used in steel constructions. Therefore this article wants to present

an appropriate parameterization concept that allows accurate calculations of shell intersections. To the

authors’ knowledge there exists no finite element formulation for shell intersections accounting for finite

plastic strains in the literature so far.

For a correct finite element formulation of shell intersections, a 67parameter concept is presented.

Its main characteristic is the different parameterization of element nodes modelling smooth parts of a

shell structure and element nodes, where an unique normal vector with respect to the shell midsurface

does not exist. The need for this distinctive parameterization concept will be shown in an illustrative,

purely elastic numerical example, where a standard displacement based parameterization (Giparameter)

for smooth shells yields completely wrong results. Finally, the influence of finite plastic strains will be

demonstrated by analysing the warping deformation of a commercial steel channel.

2 Kinematics — Parameterization

For a complete kinematic description of shells, the calculation of strain measures in shell space 8 is

required. The definition of S can be given as follows:

5:: {XElR3|XZ<P(X(§17€27€3)vt)}“
(1)

Thus the position of a particle X E S is uniquely determined by the mapping go(X(§1,§2,§3),t). The

particle X is parameterized by a set of convective coordinates (£1,{2,§3). Therefore the basic kinematic

assumption underlying any shell theory is the form of the mapping io(X,t).
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In this paper we rely for all further derivations on the standard kinematic assumption, meaning a director

field d is linearly interpolated accross the shell thickness (see Naghdi (1972)):

X(£1,€2,€3,t)=¢(€1,€27t)+€d(€1,€27t) E=£3 (2)

The vector ()5 represents the position vector of a particle with respect to the shell midsurface M (5 = O).

With equation (2) the tangential covariant base vectors g,- in S can be determined:

ga : ¢1a + €d)a Z aa + €d7a g3 : d

In this way the components of the deformation gradient F can be respresented in terms of formula

Here they are split into constant [C] und linear [L] parts with respect to the thickness coordinate f:

 

F : F[C]+5F[L]=g—;:g,®ei

with

(4)

Fm 2 aa®Ga+d®G3

F[L] = da ® G“

   

where capital letters refer to the undeformed configuration (t : 0). This completes the kinematic

description of a shell. Indeed, all further strain measures can directly be obtained by exploiting equation

(4) and additional algebraic operations. In contrast to classical shell theories, this allows a very eflicient

implementation of all required strain measures.

In order to gain explicit results for F in terms of equation (4), the position vector 45 and the director

d from equation have to be parameterized in an appropriate way. In classical shell theories the

parameterization of a particle X e M is subjected to the three components of the displacement vector

u : ¢— (I). For the director d, however, one can think about various alternatives for its parameterization.

Two variants are presented in detail here:

Variant I: Classical (Separameter concept

By analogy with the position vector (b, a displacement vector w is introduced. In this way the

normal vector N with respect to the undeformed configuration is related to the director d" by

d : N + W (see figure 1). In comparison to N the deformation of d is characterized by rotation

and stretching and therefore d can be called an extensible director field. This can be expressed

by aß 1, which means that stretches in thickness direction of a shell are taken into account.

Thus the 6eparameter concept allows the description of thick shell structures. Yet, it has to be

mentioned that the parameterization of d via W does not consider a drilling rotation along the

director axis. As will be shown subsequently, such a drilling rotation is mandatory for an accurate

description of shell intersections. Nevertheless, the 6—parameter cencept is defined by the three

components of u and the three components of w.

 

Figure 1. Parameterization of the Extensible Director Vector d.

182



Variant II: 5 /67parameter concept

This concept allows a reliable calculation of shell intersections. It was proposed by Hughes 85 Liu

(1981) and further discussed by Simo (1993). Since it is restricted to thin shells only, it is based

on an inextensible director field (||d|| = 1). Thus thickness stretches are neglected a priori and the

deformation of d can be represented by a pure rotation: d : RN. For an inextensible director

field holds:

d-dzo <=> d=w><d (5)

The axial vector u respresents the angular velocity of the director. The rotation tensor R can be

parameterized in terms of w by applying the Rodrigues formula which is known from rigid body

dynamics:

' t9 1— 6

chos91+sia+flw®w 6=||w||
i9 62 (6)

with (Da:an V a => ÜzRRT

For a detailed derivation of this formula refer to e.g. de Boer (1982). This parameterization for

d is nonsingular like the classical, displacement based 67parameter concept. The three vector

components of w are used to parameterize R in equation (6) and furthermore d. Together with

the three diSplacement components of 11, which have the same definition here as in the classical

67parameter concept, a 6—parameter model is obtained. This model includes drilling rotations

along the director axis and is valid for modelling shell intersections. Nevertheless, it can be shown

that drilling rotations in smooth shell structures with unique normal vectors on M must vanish

(see e.g. Eberlein (1997)). In those cases the drilling degrees of freedom have to be eliminated.

Otherwise the resulting equation system would become singular. This elimination is achieved by

rotating the vector components of 01 into a local cartesian base system in any element node

where I indicates the node number and 7? the coordinate direction. Here the thickness direction

(3~~direction) serves as a fixed coordinate axis in any element node. Along these axes the drilling

degrees of freedom are supposed to be zero by imposing boundary conditions. Equation (7) shows

the distinct parameterization strategies for w in context:

 

Shell intersection: w = quu = 1/1”

(7)

Smooth shell: to : wla and «[113 2 O a = 1, 2

   

By doing that, the (Separameter theory for shell intersections reduces to a Separameter concept

when element nodes in smooth parts of the shell occur. As a final remark it should be noted that

for thick shells with intersections, a 6/Fparameter theory could be derived in an analogous way.

Only one additional parameter accounting for thickness changes in a shell must be considered. In

detail this concept was presented by Betsch (1996) for hyperelastic shell elements.

3 Finite Plasticity

The constitutive description is based on arbitrarily large isotropic plastic strains. Originally, it can

be found in Wriggers et al. (1996) and is outlined in its main parts here. As basic assumption the

multiplicative decomposition of the deformation gradient F into elastic (Fe) and plastic (Fp) parts is

introduced:

F : Fe Fp (8)

With equation (8) the elastic left Caucliinreen tensor be is calculated by:

he z Fe Ff : F C; FT ‚. (9)

That means be can be expressed in terms of the inverse plastic right Cauchy—Green tensor C171. Thus it

is obvious to use the components of C? as history variables in order to determine the irreversible part

of a deformation.
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Next the dependence of the free energy \11 : @(bmar) of be and an internal variable a, which is the

equivalent plastic strain, is assumed. Under the restriction of isotropy, the second law of thermodynamics

then yields the constitutive relations for the Kirchhoff stresses 7' and the thermodynamic force q:

8‘11 811

T=2QOaTbe qz—a
(10)

From the postulate of maximum dissipation the evolution equations (associative flow rules) are obtained

(see Simo 85 Miehe (1992)):

1 aq> ._ ‚ a_q>
__£Ub€_Il/(Eb€) airl'(aq) (11)

2

TheLie derivative ßvbe is referred to as fivbe : be w lbe — be IT with the spatial velocity gradient

1 : F F—l. In equation (11) the loading/unloading conditions in KuhrrTucker form must be fulfilled:

v20 <I>:<i>(r‚q)s0 wzo <12)

In contrast to purely elastic material behavior, the plastic stresses are restricted by a yield criterion

(1) g 0. For numerical calculations b67 (1,7' and (D are required. They can be determined by applying the

return mapping scheme for finite strains as proposed by Simo (1992). Without going into further detail,

the tensorial stress update algorithm is presented in the following overview:

  

Preprocessing

7 Given: (31:71h1 and a„_1 at time tn

C t - tr —1 T tr
Ompu 9- be : Fn Cp„_1Fn oz 2 a„_1

  

v

Elastic Predictor

         

t7“ _ (9‘11 157' f7" _ _ 8&1

T — 2 go 5be bezbrer be q — m a:a"‘

v i

(I) g 0 (P > 0

_ Admissible Elastic State Plastic Corrector

T = T" q 2 qt" Return—Mapping78cheme:

Prinicipal Axes M 7',- q

   

v

Postprocessing

   

9

— . tr q Ü' _ tr tr tr , tr
T— E Tin,- ®ni C —C',ijklni ®nj ®nk ®nl

2*1

   

For the tensorial stress update the von Mises yield criterion, which is suitable to describe a wide range

of problems in metal plasticity, with linear isotropic hardening is used:

2

(DMises :Hdev T||~\/;(Ty—q) q: —Kct

The parameters Ty and K indicate the yield stress and linear hardening parameter, respectively. All

constitutive equations that have been shown so far are valid for a general 37D continuum. They can also

be applied to the classical 6~parameter shell theory Without further modifications (see Eberlein (1997)).
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In case of the 5/671)arameter model, however, a plane stress assumption has to be taken into account

since through the thickness strains are neglected due to the inextensible director field. As long as small

elastic strains are under consideration, the thickness stresses T33 can be set to zero explicitly (see

Wriggers et al. (1995)). Therefore the 5/6-parameter theory is restricted to small elastic but finite

plastic strains here. For many applications in metal plasticity like deep drawing processes, this approach

is proved to be sufficient.

ln contrast to the classical 6—parameter concept, for the 5/67parameter model a total Langrangian

description is chosen. That means, in order to determine the trial logarithmic strains eff : ln AZ needed

for the return mapping scheme, the general eigenvalue problem

— 2 — T‘ .

( p},_, —‚\:;“ C„1)Ng :0 a = 1,2 (14)

proposed by Ibrahimbegovic (1994) with respect to the undeformed configuration, has to be solved. One

should note that the eigenvalue problem refers to the in—plane (membrane) strain components only, since

the plane stress assumption is imposed. For a general 37D material law a corresponding algorithm was

recently presented by Miehe (1997).

The discussion of the finite element formulations would have to follow next. Here, only an overview can be

given. For both parameterization strategies presented, quadrilateral 4~node mixed finite shell elements

with bilinear shape functions are used. In order to avoid well known locking phenomena, the performance

of the Giparameter element is improved by means of the enhancediassumedistrain method with reSpect

to normal thickness strain and membrane strain components as well as the assumed——natural~strain

method accounting for the transverse shear strains. For the 5/ 6~parameter element only the membrane

strains are enhanced and the transverse shear strains are subjected to a reduced integration. Besides that,

a penalty term (with penalty multiplier a) enforces the transverse shear strains to become zero. Thus

only in—plane strains occur and justify the plane stress assumption. For further details regarding the

mixed variational approaches, their linearization and discretization refer to Gruttmann (1996), Eberlein

(1997) and references therein.

4 Numerical Examples

This section presents the warping of angle irons in order to prove the validity of the 5/6-parameter

concept and the failure of the 6~parameter model for the calculation of shell intersections. Furthermore,

for a commercial steel channel the influence of finite plastic strains is discussed.

At first, a cantilever beam subjected to a point load is considered, as given in figure 2. The example was

originally proposed by Chroscielewski et al. (1992), where purely elastic material behavior is assumed.

   

material data:

E219107 | V2033

6 = 1.0 - 108 (5/67parameter model)

geometric data:

a : 2 : 6

L = 36 thickness: H : 0.05

                

Figure 2. Warping of an Elastic Steel Channel

Later on, this example was recalculated by Betsch (1996) who also presented a convergence test for his

6/7wparameter concept. In figure 3 it is shown that the load deflection curve obtained by the current

5/67parameter model coincides very well with the converged solution proposed by Betsch (1996). For

the computation a discretization of 20 x 72 elements is chosen.
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Figure 3. 5 /67Pararneter Model; Load Deflection Curves; Deformed Configuration for uF : 4 x

The deformed configuration for up = 4 is also depicted in figure 3. Buckling of the upper flange can be

observed in the vicinity of the clamped end, whereas the free end of the beam is twisted. This is due to

the fact that the external load F does not act in the shear center.

For the Grparameter concept the correSponding results are shown in figure 4. The same 20 X 72 elements

discretization is applied as before. It turns out that the Separameter element behaves much too stiff.

As for the 5 / 6—parameter element the computation is performed with non unique initial normal vectors

in the intersections of the steel channel. Thus the only reason for the poor results can be the neglect of

drilling degrees of freedom, because for smooth shells, where drilling rotations cannot exist a priori, the 67

parameter concept proved its applicability (see Eberlein (1997)). Eventually, the deformed configuration

for up : 4 shows qualitatively a completely different behavior in comparison with the results obtained

by the 5/6iparameter model (see figure

F 

700 - -

600

500 - -

400 - _ 6~parameter

____ _- 5/67parameter

300 * o Betsch (1996)

200 - -

 

100 QM“— d

    

Figure 4. 67Parameter Model; Load Deflection Curves; Deformed Configuration for uF : 4

It should be noted that the performance of the proposed (Separameter model could be considerably

improved by using averaged initial normal vectors as originally proposed for the degenerated solid ap-

proach (see e.g. Ramm (1976)). However, this averaging procedure may cause severe ill—conditioning of

the global stiffness matrix for refined meshes and in those cases means the loss of practical applicability.

In order to show the influence of finite plastic strains, the warping of a commercial steel channel (U 300

according DIN 1026) is investigated. Only the 5 /Siparameter element is used for computations here.
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The problem definition is given in figure 5. As in the previous example, ’20 >< 7:2 elements are applied to

discretize the steel channel.

           

material data:

E = 2.1 - 104 1/ 2 0.3.3

5 = 1.0 - 105

HS TY Z 24 K z O

H geometric data:

' a : 10 b : 30

L : 180

Ht : 1.6 HS : 1.0

      

Figure 5. Warping of a Commercial Steel Channel

Perfectly plastic material behavior is assumed. The load deflection curves in figure 6 show the results

for a purely elastic calculation (elastic constants from figure 5). In case of the elasticeplastic material

with perfectly plastic behavior, one observes considerable softening as soon as plastic strains occur.
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Figure 6. Load Deflection Curves; Deformed Configuration for Up : 20 (ElasticiPlastic) Including

Plot of the Eqivalent Plastic Strain

Finally, figure 6 also shows a plot of the equivalent plastic strain for the deformed configuration F = 20).

As could be expected, there is a maximum of plastic deformation in the lower and upper flange at the

clamped end of the profile. In contrast to the previous example, there is no buckling phenomenon in

the upper flange. However, this is not due to the plastic strains but the altered geometric data, instead.

Indeed, for the purely elastic calculation, buckling of the upper flange could not be observed in this

example, either. This can also be perceived from the fact that there is no limit point for the elastic steel

channel in figure 6 but in figure 3 there is.

5 Conclusions

In the current paper a proper parameterization strategy for accurate modelling of shell intersections

is presented. Within this context, the influence of drilling degrees of freedom is discussed in detail.

Furthermore, the importance of the deformation gradient, which serves as kinematic basis, is particularly

emphasized. The constitutive description of finite plastic strains is derived for a 3D—continuum. The

resulting equations can be applied to the 67parameter concept for smooth shell structures without
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further modifications. In case of the 5/ 6~-parameter model a plane stress state is assumed. Due to the

total Lagrangian description for this theory, the corresponding eigenvalue problem with respect to the

undeformed configuration for the calculation of principal trial stretches is introduced. The numerical

examples show the applicability of the 5/ fiipar‘arneter element for the calculation of shell intersections.

Furthermore, the influence of finite plastic strains is shown in this context. One aspect of future work

could be the implementation of a 6/7—parameter element accounting for thickness strains. Such an

element would allow the calculation of thick shells with intersections including finite plastic strains.

However, for most practical applications, the 5/67parameter element shows an absolutely satisfying

performance.
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