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Multiplicative Thermo-Viscoplasticity: A Thermodynamic

Model and its Finite Element Implementation

S. Reese

Most existing models for viscoplastic material behaviour are either of the so-called Perzyna or of the

unified type. In the present paper, a model of the unified or ouerstress type is proposed which includes

the Bingham solid, as well as models without an elastic range, as special cases. The approach is very

general in the sense that large elastic and large inelastic deformations as well as large deformation

rates are taken into account. Furthermore, full thermo-mechanical coupling is considered. The

model is based on a multiplicative decomposition of the deformation gradient in elastic and inelastic

parts. Due to the modular structure, the finite element implementation remains relatively simple. Er-

isting algorithms for models offinite elasticity or finite plasticity can be adopted with only minor changes.

1 Introduction

Rate—dependent inelastic material behaviour is exhibited by various kinds of materials. Metals and

alloys for instance, exhibit such behaviour for temperatures higher than approximately a third of the

absolute melting temperature. Models for such material behaviour include the case when the direction

of inelastic strain is determined by the total stress, representing the so—called PerZyna—type model (see

Perzyna, 1963). A more recent development is the unified approach; in this case, the direction of

inelastic strain is determined by the so—called overstress (see Krempl, 1987, and citations therein). The

present model fits into this second framework. In contrast to this and other approaches, however, rate—

dependent effects are considered in the elastic as well as in the inelastic range. Such material behaviour

can be described by a rheological model consisting of a Maxwell element and a Prandtl—Reuss element in

parallel (see e.g. Haupt, 1993, and Figure 1). A similar approach has been used to model the behaviour

of rubbery polymers by Lion (1997 a,b). For comparison, the Bingham model, representing perhaps the

simplest rheological model for Viscoplastic material behaviour, consists of damping and friction elements

in parallel connected with a Hooke element in series. Such a model could in general apply if the material

behaves primarily elastically before yield, and viscoelastically after yield. In contrast, the current model

would be relevant if the material shows Viscoelastic behaviour both before and after yield. In this way, a

wider range of material behaviour can be described. Of course, experiments may reveal that a model as

simple as that proposed here, cannot account for the whole variety of special effects. But due to the fact

that we are relatively free in the choice of the non—linear elasticity models and the evolution equations. it

is expected that a satisfying Correlation with experimental results can be achieved without changing the

overall structure of the model. Thus, the thermodynamical framework and the finite element formulation

remain the same, even if a fitting to experimentals is carried out.

The present work is concerned primarily with the thermo—viscoplastic material behaviour of metals. But

the model is also very useful to describe the inelastic behaviour of polymers, which show a wide range

of inelastic phenomena, depending on the temperature range chosen. Setting the yield stress equal to

infinity yields as special caSe a typical model for the viscoelastic material behaviour of polymers in the

rubbery state (see Reese 81: Govindjee, 1996). In order not to restrict the range of applications, the model

is based on large elastic and large inelastic deformations. Moreover, full coupling between mechanical

and thermal fields is considered. The finite element implementation of a similar model can be found in

Keck & Miehe (1997) for isothermal problems. An alternative approach for the non-isothermal case is

discussed in Lion (1997 b), who also carried out experiments and determined the material parameters

of his model on the basis of these. In the present work, we focus on the formulation of the above model

and its finite element implementation.

The paper begins with the formulation of the constitutive model for thermoviscoelastic material be—

haviour. In particular, this involves obtaining forms for the evolution equations (chapter 2) and Helmholtz
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free energy (chapter 3). Next, the finite element solution of the evolution, and linear momentum and

energy balance equations is discussed. Finally, in order to Characterize the behaviour of the proposed

model, a numerical example is presented.

2 Constitutive Equations

In order to derive constitutive equations for materials with thermo—viscoplastic behaviour, we use the

entropy inequality in the Clausius-Duhem form

. 1. .

—~\II+S:§C—s@—%Q-Grad820
(1)

Here, \11 denotes the Helmholtz free energy per unit reference volume, S the second Piola—Kirchhoff

stress tensor and s the entropy per unit reference volume. For the referential heat flux Q we have

the relationship Q : JF‘1 ‘ q, where q is the spatial heat flux, F the material deformation gradient

and J : det F. It is assumed further that the constitutively dependent variables W, S, 8 and Q are

functions of the right Cauchy—Green tensor C, the absolute temperature G) and n internal variables

(Xch : 1,2, ...,n) to be specified in the following. The heat flux Q depends additionally on the

temperature gradient Grad O.

The present material model is based 011 the rheological model depicted in Figure 1, where the two springs

have the stiffnesses E00 and Em and the viscosity of the damping element is denoted by 7]. 0y represents

the yield stress. If only small deformations are considered, the decomposition of the total strain E is

additive, leading to the relations between 681,, sip, 56,, and 5,, stated in Figure 1. A decomposition of

this kind would not be necessary for the Bingham model, where the strains in the friction and damping

elements are equal. As already mentioned above, another difference betWeen the two models is the

fact that in the proposed model, the damping element is active from the beginning, i.e. , the material

behaviour is rate—dependent both before and after yielding. In the limit of extremely slow loading, both

models reduce to the usual Prandtl—Reuss element.

  

Figure 1. Rheological Model for Viscoplastic Material Behaviour.

Referring to the model depicted in Figure 1, the Helmholtz free energy takes the form

E00 (e—eip)2+.—Em (5—31,); (2)

where \Ilp7. (pr stands for Prandtl—Reuss) represents the strain energy in the Prandtl—Reuss spring,

whereas ‘llm is the strain energy in the Maxwell spring. If large deformations and temperature changes

are considered, this last form for the free energy can be generalized to that

warp, (1?;PT-c1.1v.-1 ®)+\11m,(F,‘UT~C-F71 e) (3)
2p 1 zu 7
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where the multiplicative decompositions

F : Fep “ Fip Z Feu ' Fiv

have been applied. Alternatively, Fip and Fm could be interpreted as elastic material isomorphisms

(see Bertram, 1993, Svendsen, 1997). In the case of isotropic material behaviour, the representation (3)

reduces to

w : xilp. (hep, e) + (rip. (ha, 9) (5)

where the “elastic” left Cauchy—Green tensors be], : Fep -FZP : F - Ci‘p1 - FT and be” : Fm, :sz :

F - Ci—U1 -FT have been introduced. The tensors Ci—p1 and C171,l function as internal variables X1 and

X2, respectively. The internal variable Ci—pl is assigned to the rate—independent part of the model. The

associated evolution equation

520;; :f1(c‚c,cgpl‚e‚e) (6)

is then required to be a homogeneous function of first order in and Note that the evolution

equations are constructed in such a way that one internal variable does not influence the evolution of

the other. This assumption is motivated by the special choice of the rheological model shown in Figure

1. The second internal variable is linked to the rate—dependent part of the model. As such7 its evolution

is described by a function of C, C71 and 6:
1’U

d

EC;,1:f2(C,Ci‘Ul,®) (7)

Inserting the material functions for \11, S, s and Q and the evolution equations in the Clausius-Duhem

inequality (1) gives

am 1 - 6W d _1 Ö‘If d _1 Ö\Il

-2— :—C—————:— . — ;—’ . — ‚
(S ac) 2 aci-pl dtCW sci-vi dt W lae

  

+s)(—')—%Q.Grad(—)20 (8)

The inequality is sufficiently fulfilledJ if the constitutive equations

Ö‘II 8W ‚ ‘

and the residual inequality

Lg] '5!- ‘1 (N -‘l *1 1 G~de>o 10
ac; 'dt 17’ ac);1 'dt i” ü GQ' 1a — ( l

are hold. In order to render thelast term in (10) non-negative1 Foul-16195 law q : —k grad 6 (k heat

conductivity) is assumed. The first two terms are rewritten in the form

1 _1 1 _1

~77” : :2—(£1,-bep)~b5p —Tm : §(£UbeU)-bey 20 (11)

where the Kirchhoff stress tensor T has been split into the Prandtl—Reuss part 7'1”. : '2 F - ¥g = FT and

the Maxwell part Tm : 2 F - ‘3quij ~FT. Note that Tp,» also appears in Simo & Miehe (1992), whereas the

second term has already been discussed in the context of finite viscoelasticity (see Reese 85 Govindjee,

1996), The form of the inequality (11), in conjunction with the purely elastoplastic and viscoelastic

cases, suggests the forms

1 _1 . (9(1) la

7 = (m
1 _1 _ 1 (“films

‚

”"72“ (vaev) 'beu “ ‘7: 8T") (13)
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for the evolution relations, where the plastic potential (Ema represents the yield function, and the so—

called viscoelastic potential (Pm : 171',” : V"1 : Tm is defined by means of the fourth order tensor V’1

given by

1 1 1

V—1:~———.——14——1®1+~—~———11®1 14

2 [1m (9) r(be„‚6)( 3 l 9 Km (9) +(bemo) l l

\-—\f‘——/ _—v-—/

HD UV

This so—called inverse viscosity tensor V"1 is constructed in such a way that in the limit of small defor—

mation rates, or in other words, if only small perturbations away from thermodynamic equilibrium are

considered, the linear evolution equation

1

(Eubev) nb—1 z

e“ 27'

1

_ (be, — 1) (15)
‘2

is recovered. In the context of the finite element implementation, the analogous forms of (12) and (13)

will be very useful, as shown below.

3 Helmholtz Free Energy

In the derivation of the constitutive relations for S and s and the evolution equations (12) and (13), the

temperature dependence could be included without complicating the analysis. This, however, is not the

case for the Helmholtz free energy, which has to be formulated in such a way that the internal energy

6 and the heat capacity c are thermodynamically consistent. These issues have been discussed in detail

by Chadwick (1974). In the paper of Chadwick (1974), one finds the general form for

e e 6 9 ~
2 _ -_ —: 16w \Iloeo+eo(1 60)+/®Üc(1 ewe ( )

where the heat capacity c is given by

82%

cz—Q—a—G—fzcm—kcm

and eo denotes the internal energy 6 = lII + (95 evaluated at the reference temperature 60. If the

heat capacity is assumed to be constant (c : E), the stresses are at the most linear functions of the

temperature. Experimental observations, however, show that such a linear relation is not always realistic.

In order to work with a non—linear relation, we introduce the function g Using

52g

CZÖ—OW We (18)

the Helmholtz free energy can be expressed by

6 A 6 E) „ ‚ ag
\I/Z w——- —- — — — w __60(1 60)+C(€') 60 Oln®0)+(60+g(6) 9(60)+a6

 

(60 — 6)) \II0 (19)

GU

It is evident that a non—linear dependence of the stresses on the temperature can now be taken into

account. Note that g could, for example, take the form g = Mein)“, with the material parameters a and

1) determined by means of experiments. Special cases of (19) are

w = (mm + «m we.» and w = (woo + (mm) + w f (J) (2o)

Here, J8p denotes the determinant of Fep and 0/7 represents the thermal expansion coefficient. Whereas

the first form is rather appropriate to model the elasto—plastic material behaviour of steel, the latter is

typical for the so—called purely entropic viscoelastic behaviour of rubber. In contrast to steel, where

viscous effects are often neglected, rubber exhibits clearly rate—dependent material behaviour while the

plastic deformation being of subordinate importance. In this way, the form (19) allows to describe a
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wide range of material behaviour. The choice of a special model is only controlled by the imput file

which makes the present approach very useful in practical applications.

4 Numerical Issues

In this section, two aspects of the numerical treatment of the constitutive model described in the above

are discussed. The first concerns the solution of the evolution equations (12) and (13). In the second part,

the weak forms of the balance of linear momentum and the balance of energy are given and discussed

from the numerical point of view. It is important to note that the integration of the evolution equations

is carried out on local level, i. e. in the Gauss point in a finite element context. The solution of the weak

forms, however, cannot be done before the finite element vectors and matrices have been assembled.

Neglecting the inertia terms, this requires the time integration of the energy balance.

Since the evolution equations (12) and (13) have an analogous structure, the time integration of these

equations can be carried out in the same way. Efficient algorithms for that can be found in the literature,

usually in relation with isothermal elastoplasticity (see e. g. Weber & Anand, 1990, and Eterovic 85 Bathe,

1990). Caused by the fact that the evolutions of the internal variables Ci—p1 and C17“1 are completely

decoupled from each other, we can treat each evolution process seperately. Furthermore, the temperature

plays the same role as the so—called “trial” strain, i. e. , both quantities are so-called global variables. As

such, they are held constant on local level. Taking this into account allows us to proceed here as in the

isothermal case. The only important difference between the plastic and the viscous part lies in the fact

that the plastic part requires to consider the side condition (Ppla S 0. Thus, for the local integration of

the present constitutive model, it suffices to combine already existing and validated algorithms. This

makes the implementation of the model very simple, especially if such algorithms have already been used

within another program. For more details in finite viscoelasticity see Reese & Govindjee (1996).

In the present initial boundary value problem, the balance of linear momentum and the balance of

energy are solved in weak form, whereas the balances of mass and angular momentum are satisfied due

to p : p0 J and ‘r : TT‚ respectively. The weak form of linear momentum takes the form

1 a

/ _rh;(F"T.ac.F-1)hdvh„/ T-6uh (Hi/1:0 (21)

5:; 2 we

where the volumetric force and the inertia force have been neglected. 6C is defined by 6C = sym (6FT~F).

On the boundary 888“, the displacement vector is given by u : ü, whereas on the boundary ngP,

tractions (stress vector T = T) are prescribed. The index h indicates that we deal here with the discrete

form of the variational formulation. In the present finite element formulation, linear approximations for

u and G are chosen.

The thermomechanical coupling in this balance equation is contained in the temperature dependence

of the Kirchhoff stress tensor 7' : +(bep‚be„‚®), which leads to a temperature—dependence of the

deformation. In particular, the coupling effect is due to the deformation resulting from thermal expansion

(controlled by the thermal expansion coefficient 07‘), as well as the temperature—dependence of the

material parameters, in particular that of the relaxation time, the yield stress and the hardening modulus.

The balance of energy in weak form is given by

/h Jh qh ~grad 59h dV” +/ (—wf;„ +10;le ch 9“) aeh dV 7/ Qo‘e dAh = o (-22)

Ba 83
' h

ÖBOQ

where the quantities zum and wext are defined by

  

arm 1 _ (91' r 1 _ A „
wint : (Tm — 6 ; 5 ß hm, .b5U1+(‘rp,. — G) 06 ) : ßvbep . hep1 : rum (bembep, 9) (23)

and

a 7 m ‚‚(um 2 m T; + L) : d 2 wext (bep,bw,@,d) (24)
06) (98
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For simplicity, the index It has been dropped in the latter two equations. Note that (1 represents the

symmetric part of the spatial velocity gradient 1 : grad v. On the boundary 0888 the temperature

is known, whereas the heat flux (Q : Q - N") is prescribed on the boundary ÜBgQ. We have further

BBS : 088“ U Ößgp : 8586 U öBgQ (088“ n 883p : 0, 8838 H ößgQ 2: (ll). Finally, initial conditions

have to be defined: 11" (X,t : 0) : 0, 6h (X‚t : 0) : Go.

The two terms, win, and we“, describe the dissipation of mechanical energy into heat. The size of the

latter contribution, however, is mainly controlled by the velocity field, Whereas the first is in particular

influenced by the evolution of the internal variables. For this reason, we have chosen here the notions

internal and external dissipation of energy. Furthermore, it is worth emphasizing, that the internal

dissipation term is only present in the case of an inelastic problem, Whereas the external dissipation of

energy takes place even in a thermoelastic problem.

The weak forms are solved by using Newton’s method which requires a consistent linearization of the

two equations. Note that the tangent operator is not symmetric which is due to the thermo—mechanical

coupling. The mechanical part of the model alone would provide still a symmetric tangent, since both

evolution equations are based on a potential. As element formulation, we use here the standard isopara—

metric displacement formulation. For the present example this element performs sufficiently well. Note,

hOWever, that in bending situations or nearly incompressible problems, in order to avoid locking, the use

of mixed formulations is recommended.

5 Example

As example, we investigate the compression of a steel block. The geometry and the loading of the

structure are depicted in Figure 2. The boundary conditions are chosen in such a way that the top of the

structure is constrained in the horizontal and vertical direction. At the bottom, the block is allowed to

move in horizontal direction, except at the middle node, which is held fixed. As for the temperature, it is

prescribed at the top of the structure, and otherwise allowed to develop freely. On the other boundaries,

the heat flux is set to zero.

The following material parameters are used:

um z: 80769 N/mmz; KOO 2121154 N/mm2

‚um : goo/2‘, Km : KOO/2; 7‘ : 1s

0'y : 450 N/mmZ; H :129 N/mmg; wy : 0.00‘2; wH = 0.002

aT : 1.2~10_51/K; k : 45 N/(K s); E : 3.768 N/(mm2 K)

(‘25)

The elastic material behaviour in the Prandtl-Reuss element as well as in the Maxwell element is modeled

by means of a compressible Neo—Hooke model. The temperature dependence of the yield stress cry and

the hardening modulus H is controlled by the two parameters my and wg, respectively. The heat

capacity is held constant.

If the block is compressed extremely slowly, the material behaves approximately thermo—plastically. The

heating of the structure and the distribution of the temperature is shown in Figure 3. Due to having no

heat exchange with the surroundings on three of the four boundaries, as well as the dissipative generation

of heat internally, the temperature increases noticeably. In particular, due to d m 0, the heat generation

is here caused by the energy dissipation term mint. This being the case, the distribution of the plastic

equivalent strain and the distribution of the temperature are very similar. This is, however, not the case

before the yield stress is reached, since then only the external energy dissipation is present, which is

negligible for very low loading velocities (see Figure 4.)

In Figure 5, the temperature distribution for the same total load, but different loading velocities. is

plotted. Here, we see that, the faster the loading, the smaller the temperature increase. In addition.

the structure then behaves more stiHiy. Indeed, for very slow loading, the stress in the Maxwell element

is negligible. In this case, the deformation of the structure is controlled solely by the Prandtl-Reuss

element. For a higher loading velocity, however, the Maxwell part of the model also contributes to the

stress state in the structure. Consequently, this increases the stiffness.
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Figure ‘2. Steel Block under Compression.
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Figure 3. Temperature Distribution for Two Different Compression States:

(a) Aomax : 57.1K, (b) Aomax z 228 K
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Figure 4. Temperature Distribution: (a) Before Yield (Aemax : 0.0151K),

(b) After Partial Yield (AGmax : 0.0818K).
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Figure 5. Temperature distribution: (a) : 30kN/s (AOmax : 15.9 K), (b) : 3kN/s

(Aemax : 114 K), (c) F = 0.3 kN/s (Aemax : 177 K)

6 Conclusions

Considering the fact that large elastic and large inelastic deformations as well as full thermo—mechanical

coupling are taken into account, the computational effort is astonishingly small. What remains is a.

comparison with experimental results which will be pursued in a future work, based on data published

in earlier literature.
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