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Model- and Parameteroptimization for a Constitutive Law
Describing Deformation Induced Anisotropy

H. A. Rost

A constitutive law is presented to describe the physical phenomenon of deformation induced anisotropy.
Biazial tension and biazial compression test procedures for sheet metal are shown as posstbilities to
observe this phenomenon and to acquire data for optimisation. The constitutive model of Chan, Bodner
and Lindholm is extended to deformation induced anisotropy. With a focus on the multi dimensionality
of the test results and their fitting, the formulation of an objective function is shown. One main issue of
the paper is the parameter fitting. Price’s procedure is applied to fit the set of parameters of the system
of ordinary differential equations (constitutive model) as good as possible to the material behaviour.

1 Introduction

In many technical areas it has become more and more important to know the behaviour of different ma-
terials under mechanical and thermal loading. This is important for the design and control of processing,
working and deformation processes as well as for a safe and economical design of machine elements and
constructions with respect to strength, stiffness and temperature resistance. For the minimisation of
costs and to get more accurate stress results the numerical simulation plays an increasingly important
part. In this context one crucial factor is the model describing the behaviour of the material. In this
paper the procedure of testing the material, formulation of a constitutive law and optimisation of the
parameters will be presented.

2 Physical Phenomena of Deformation Induced Anisotropy and Test Procedure of Biaxial
Tension and Biaxial Compression

The inhomogeneous microstructure of poly-crystals leads to anisotropic elastic and inelastic material
behaviour. As the elastic constants of a single crystal are not uniform in all directions, the not fully
stochastic distribution of the orientations of the crystals in the body leads to a macroscopic anisotropy
following a deformation. Plastic deformation of metals is bound up with the crystal lattice. Thus, an

Figure 1. Cross Specimen

irregular distribution of crystal orientations, of embeddings, of lattice defects and of grain boundaries
leads to plastic deformation of the metal, depending on the load directions. Since the micro structure
of metals changes during deformation, e.g. by dislocation pileups, in general a change of the anisotropic
property during plastic deformation is observable.

To investigate this mechanism, among others, biaxial tension and biaxial compression tests were exe-
cuted. For that purpose cross specimens (Figure 1) were loaded with various load paths (e.g. Figure 2).
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Figure 2. Possible Load Paths

Proportional load paths (Fy/F, = constant) are as well possible as any kind of a hook path (see Figure
2d). During the tests the stress—strain curves in the two principal axes were plotted. Furthermore, the
deformation induced changes of the yield surface were determined. Various load paths are necessary to
determine the correlation between the prescribed deformations and the change of physical properties.

To describe the measured results one special test shall be discussed exemplarily (for further discussion
see Rost et. al., 1998). The deformation in the specimen body and the corresponding load are gauged
in the 1- and the 2-direction (1-direction is the rolling direction of the sheet metal). From this data a
stress—strain relation for each direction is obtained. Figure 3 shows the results of the biaxial tension tests.
In this experiment the specimen was loaded with identical force rate in 1-and 2-direction (F; = Fg).
After a predefined deformation (here: &1 = 3%, 5.8% and 8.7%) the loading was stopped to detect the
momentary yield surface (Figure 4). This is done in six directions in the tension-tension space and in
three directions in the compression-compression space. These points characterize the limit of the elastic
domain. The change of this shape describes the hardening of the material (isotropic, kinematic and
formative). This behaviour shall be described as exactly as possible with the following constitutive law.

3 Constitutive Law
The formulation of a constitutive law describing deformation induced anisotropy is oriented towards
the model of Chan, Bodner and Lindholm (Chan et. al., 1988).First the assumption of the additive
decomposition of the strain rate into an elastic and an inelastic part is used

£ =& +e” (1)
The elastic part is described by Hooke’s generalised law

g% b= B e (2)

For the inelastic part of the strain rate £ an evolution law is formulated. To complete the model, evolution
laws for the isotropic and the kinematic hardening K and 3, respectively, are formulated

: 1 [ (K + Brur)? " .
P —
e = DOeXP{_i{T }./Z/O' i,75,k,1=1,...,3 (3)
K = mi[K, - K]W? (4)
Bij = ma[Diuy —Biy]WP  4,5=1,...,3 (5)
Here s := o — %traI is the deviatoric stress, W? := o - -€? is the rate of plastic work and w is defined
as u := \/0—?'75, where o - -0 is the inner product of the stress tensor.

To describe anisotropy in the inelastic deformation rate (3), JJ is defined in a different way as in the
original model. It is set as

1
dy 5= 50’--./}/0 (6)

For the forth order structure tensor A/ a definition of Spencer (1971) , with the application of Imatani
3
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Figure 3. Force—Strain Relation in Biaxial Tension Tests
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Figure 4. Evolution of Yield Surface

et. al. (1995), is used.

N =N (mm,mw),m(m) ()
4 4

Spencer derived that tensor using invariants. It is built from three independent structure vectors m?,
m?, m3. To describe deformation induced anisotropy evolution laws for these three vectors have to be
formulated. They are given as

m® = Pm® =12 (8)
and m(®) shall be perpendicular to the two others for planar anisotropy in sheet metal
m@ = MO xm® (9)
I X m ]
The 19 unknowns of the model are combined to a hyper-vector
y(@t) = {e}),...,els, K, P11, .., P13, ma1, mia, a3, Ma1, Mo, mag}’ (10)

y can be determined, if the evolution equation y is integrated with a set of initial conditions y(to) and
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Figure 5. Rating of the Yield Surface

a load or deformation rate

{ &) = flty,) (11)

Q(tO) Q(o)

Several integration methods are used to solve this set of 19 coupled ordinary differential equations (11).
Explicit and implicit Euler methods are used as well as the very efficient generalised Runge-Kutta method
(Kaps and Rentrop, 1979). In the evolution equations and the initial conditions twelve parameters occur

= {D07I((O))K1)D17m17m2)n3 al)"'7a5}T (12)

Five of it ai,...,as are anisotropy parameters from the structure tensor.

4 Formulation of an Objective Function

To be able to find the set of parameters for the constitutive law, which reflects the test results in an
optimal way, a measure for the quality of the fit must be found. This quality function @ (in the following
called objective function) assesses the conformity of measured values with corresponding simulation data.
These simulation data are obtained by integration of the constitutive law using the parameter set §, and
will be called the model answer in the following .

As a quality statement the sum of weighted and normalised distances between the measured values and
the model answer is used. The objective function'is defined as

m €Ezp (i) — €Sim(6.) (i)
o B | ,
’ w v S 2 Z“’ [eeeral
m q
* *okk **** _
+az ;wl Z;‘ " *** JZl w (Zq-1 w**** Zl ak 1)[) (13)

Where m is the number of stress-strain tests, n is the number of detected yield surfaces, ¢ is the number
of detected points per yield surface, p is the number of calculated stress points per stress-strain simulation
and wf, wi*, wi**, w*** and a; + a; = 1 are weights.

The first term of the sum assigns the value to the fitting quality of the stress-strain proportion (Figure 3).
For that reason the gap, using a weighted error amount, is calculated.

The second term of equation (13) assigns the value to the fitting quality of the yield surfaces after various
deformation steps (Figure 4). A direction dependent scalar is defined to measure the error. Direction
dependent in this context means, that with the origin of the main stress space and one special, measured
yield point a direction is given (Figure 5).

The distance ay in the direction between the yield point and the quasi yield surface of the model answer

is summed up with weights. With this background a criterion for the model must be formulated for the
occurence of inelastic deformation. Starting from the rate of plastic work W?, the quasi yield surface
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shall be reached when the equivalent inelastic strain rate becomes equal to a critical value.
el = €hit (14)

b 44 18 defined as

2
Ebpy = \/gs%-ep (15)

Integrating the evolution laws ((3) - (5), (8)) it is possible to calculate the stress osi, when the quasi
yield surface is reached. ay for equation(13) is defined as

ay = HUSim“ ' (16)
llo Bzl

The identification of the optimal set of parameters will be done by the minimisation of the objective

function @ (13) with regard to the set of parameters.

5 Parameter Optimization

In principle it is possible to use two families of nonlinear optimisation strategies for solving this kind
of minimisation problems. They can be separated in a class that searchs deterministically, and one
using stochastic elements. Deterministic methods are fast but they can stick to a local minimum and,
therefore, then will not find the global minimum. Stochastic search methods have the advantage that
they do not stop in local minima, but they need a large amount of CPU time.

In this paper the very efficient stochastic method of Price (1978) is applied to identify the global minimum
of the objective function Q (see equation (13)). The procedure begins with the generation of a start
cluster (N sets of parametersets) in parameter space Q. For that the Monte Carlo method is used.

_3_;(1,0)’“_’2(1\’,0) cN (17)
Then the worst point (set of parameters) of the cluster has to be found

i := max{i € {1,...,N}|VEke {1,...,N}\ {i}: Q™ V) > Qz*~1)} (18)

Following this the first phase (outer search) of the procedure starts. A random selection of n points of
the cluster creates a subset P. Then the mean position g of this subset is calculated

S|

n
g ==Y gli (19)
k=1

A new point £ (set of parameters) is generated by making a point z of the cluster symmetric with
respect to the mean position g

0 = 2g — glint1:7-1) (20)

After a check whether the new point is included in the search area ) ¢ Q, the objective function @
(13) has to be evaluated. If the quality value is better (that means smaller) than the worst one of the
old cluster

QEY)) > Q(glioi—1) (21)
the new point is sorted in and the worst is discarded. Otherwise the new set will be thrown away and

the outer search starts again. This outer search continues until the rate of success of finding new better
points is getting too small.
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Following this, the second phase, the inner search is started. Again a subcluster is defined. But,
different to the outer search, the new point is generated by finding the average of the mean position g

of the subcluster and one other point z(i~+17=1) of the rest of the cluster

300 .= % (g+ E(in+1-i—1)) (22)
If the quality value of the new generated point is better then worst one of the old cluster

QEY) 2 Qa1 (23)
the new point is added to the cluster and the [ormer worst point is removed. If the new Z is not better
it is put aside. This procedure continues until an iteration condition is fulfilled. Such a condition can
be that the number of evolution of the objective function is bigger then a predefined number, that the
N points of the cluster being sufficiently close to each other or that the computing time reaches a given
value.

Seibert (1996) and Lesche (1996) showed the efficiency of Price’s procedure for this kind of minimization
problems, compared with other stochastic optimization strategies. The reason why the procedure is so
efficient, is that it takes into account the structure of the parameter space and does not search completely

randomly like others.

With this procedure the course of material testing, formulation of a constitutive law and parameter
fitting is completed. More detailed information about testing results and the parameter optimization
will be given in a forthcoming paper. '
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