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Axisymmetric Vibrations of Thin Shells of Revolution Joint at a

Small Angle

S. B. Filippov, N. V. Naumova

Free axisymmetric vibrations of thin shells of revolution joined at a small angle are analyzed. The asymptotic

integration method for equations with a small parameter is used. Vibration frequencies of a cylindrical shell

joined with a conical shell arefound. A comparison ofnumerical and asymptotic results is performed.

l Introduction

Assemblies containing shells of revolution joined along parallel circles find wide use in the modern engineering,

especially in aircraft and spacecraft industry. In many papers, the vibration of connected shells are analyzed by

means of numerical methods (see, for example, Anderson at al., 1971; Bushnell, 1974; Hu and Raney, 1967).

The asymptotic solutions (F ilippov, 1975, 1977, 1981) amplify the numerical results and clarify qualitatively the

allocation of the vibration frequencies and behavior of the vibration modes.

The approximate formulae for the lowest frequencies of thin connected shells, obtained in papers of Filippov

(1977, 1981), do not allow to consider axisymmetric vibrations of the shells joint at a small angle. In this paper

more general asymptotic formulae are found. By means of these formulae the lowest frequencies of axisymme-

tric vibrations for all values of the connection angle can be calculated. As an example the axisymmetric vibra-

tions of a cylindrical shell joined with a conical shell are considered. A comparison of the asymptotic and nume-

rical results is performed.

2 Basic Equations

Let us consider two shells of revolution of equal material and thickness, connected at an angle (p (see Figure 1).

 

Figure 1. Two Thin Shells of Revolution Joint at a Small Angle

The free axisymmetric vibration of either of the shells are described by the following dimensionless equations:
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where

I

The superscript ( ) denotes the derivative respect to the meridian co-ordinate s, u and w are the components of

displacement, B is the distance between a point of a middle surface and the axis of revolution, R1 and R2 are

the radii of curvature, 7» = (1— v2 )pm2E‘l is the frequency parameter, v is Poisson's ratio, E is Young‘s mo—

dulus, p is the mass density, (D is the vibration frequency. The dimensionless thickness h is a small parameter.

For the first shell s changes from s1 to st and for the second shell it changes from st to s2. We suppose that the

shell edges s z sI and s = 52 are clamped and on these,

“(kl :wlk) 290‘) :0 (kzl’z) (2)

At the connection lines s = 3* the following continuity conditions are to be satisfied:

T10) : T10) cosq) + N10) sin (p N1“) = NP) cos (p — T19) sin (p

um =u(2)cosrp+w(2)sin(p w(')=w(2)coscp—u(2)sincp (3)

6(1) 2 9(3) M111) Z M113)

Here T1, N1 and M1 are the dimensionless stress—resultants and stress—couple, 9 is the angle of rotation. The

superscript k(k = l, 2) denotes variables corresponding to the first and the second shells, respectively. We

shall omit superscripts in formulae like equations (l), which are valid for both shells. The connections between

T], N1, M1, 6 and u,whave the form

B! I

leu’+—v—V—+v —u+l M,=u4 9'+v£9

R1 2 B

B’ B’

N1 :M{ +——(M1 —M2) M2 : „4(—e + ve')

B B

9=—w'+i

l

3 Asymptotic Analysis

System (1) can be reduced to the following equation:

 

döw d5w ] dzw dw4
—+d—-——-+...—b —b——b =0

M (d56 5 a’s5 a’s2 I ds OW

where [9(5) = Ä — (1—v2)R2_2(s). When u —> 0the integrals of this equation have the following asymptotic

expansions:

III

l

w„ = W„(s)exp(EJ-q„dsj +... n = l, 2, 3, 4 w 2 WW +... m z 5, 6
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where q" is a root of the equation q4 = b, w50 and w60 are the solutions of the momentless equation

dzw dw
b +b—-+bw=0

2 Ids 0

 

ds

If b(s) < O for all s then iR(q,,) 72 0, functions w„(s) (n = 1, 2, 3, 4) increase or decrease rapidly and are

called boundary effect functions (see Gol‘denveizer at al., 1979).

Therefore the approximate solution ofthe boundary value problem equations (1) to (3) for

x < A. = min (1—v2)R;2(s)

.ve{.vl ‚A'z i

can be expressed as

x z „mnxO + „vath i = A0 + M] + (4)

where x denotes one of the variables u, w, T1, N1, 6 or M1 . The first term x0 is the solution of the momentless

system, which can be derived from system (1) by choosing u = O . The second term x„ is the linear combina-

tion of the boundary effect functions. The intensity coefficients y0(x) and y ,,(x) are presented in Table 1.

    

function u w T, N l 6 Ml

yo O 0 O 4 0 4

yb 1 0 1 1 -1 2

        

Table l. The Intensity Coefficients

The order of the momentless system is 2 while the order of system (1) is 6. Therefore the solution x0 can not

satisfy all conditions (2) and (3). To find function x0 and an eigenvalue M of the momentless boundary value

problem for the momentless system it is necessary to choose one main condition from three boundary conditions

(2) and two main conditions from six continuity conditions (3). The others, additional, conditions can be satis-

fied by the choice of the boundary effect functions xh . The separation into main and additional conditions is

called the splitting of the boundary conditions.

Splitting of the boundary conditions (2) is carried out in the book of Gol'denveizer at al. (1979). The main con-

ditions on the shell edges are:

u(k)(sk) = ugk)(sk) + tiu§,k)(sk) = 0 k = 1, 2

Discarding minor terms uns,“ (sk) we obtain the following conditions for the momentless system:

ugk)(sk) = 0 k = 1, 2 (5)

In the papers of Filippov (1975, 1977) it is shown that for (p ~ 1the conditions for the momentless system at

the connection line have the form

7)

T10” = 71%" = 0 s = s* (6)

Conditions (6) are not valid for small values of the angle (p .

Let us consider
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CPIQOH“ ¢o~1 0<0t<1 (7)

Taking into account equations (6) and (7) and the data from Table 1, the continuity condition (3) may be repre-

sented as follows:

73%” + Ml,” = T502) + Mil/,2) + (0011“(H4Nl3) + Ml?) (8-1)

H4Nlé) + “Ni/1,) = (14ng) + HNli) - (DOME? + um”) (8.2)

zzgl) + Hui," = ugz) + W53) + (poua(wgz) + w?) (8.3)

wt” + will = we + W22) — woman + We) (8.4)

leg” + es,” = was) + e12) (8.5)

(12114113) + MS) = MM}? + M193) s = s. (8.6)

From these six continuity conditions it is necessary to choose two main and four additional ones. We consider

the differences A,- = y”,- — y „‚- ‚ where ym- and y m are the orders in u of the main terms among the moment-

less and boundary effect functions respectively in the equation (8.i). For example, in equation (8.2) the main

momentless term is uaLpOT1(02) and its order yoz : 0t . The main terms among the boundary effect functions in

equation (8.2) are “fo? . Therefore ybz = 1, A2 2 0c — 1. It follows from equations (8) that

A12—1A2:oc—1A3=—0t A4=0 A521A6=2

The values A,- for the main boundary conditions must be strictly less than for the additional ones. The condition

(8.1) ist the main condition for any values of (x . Discarding minor terms in equation (8.1) we obtain the conditi-

on

TIE)” 2 71(02) s = s», (9)

If 0c < 1/2 then equation (8.2) is the second main condition. The main conditions (8.1) and (8.2) give the

conditions (6) for the momentless system. If (x > 1/ 2 then equation (8.3) becomes the second main condition

and the conditions for the momentless system have the form

1 2 _

71%) = Tl.) ué” = us” s = s* (10)

In case 0c : 1/2 we have the equality A2 : A3 . To obtain the second main condition for a = 1/2 we shall

compose the linear combination of the boundary conditions (8).

The boundary effect functions for the first and the second shell close to line s 2 st are:

wgl) = e_E-"(c1 cosEfl.l + c2 sinäl) wg) : e“£2(c3 cosé2 + c4 siniz) (11)

where

4 

  

__ q _ q _
ä] — Hfi(S-S*) £2 — —Hfi(s—si) q —— Ib(s*)
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The analogous formulae are valid for the functions up, Vii), NM, 6„ and M”, (see Gol‘denveizer at al., 1979).

By substituting expressions (1 1) into the conditions (8.2) to (8.6) and discarding of insignificant terms we obtain

2-1/2 H1/2 b3/4(_C1 + CZ + c3 _ C4) + (p0 T](O2) : 0

“81) _ „((32)

(2)
W51) — W0

‘HWQOCEZO

cl+cz+c3+c4=0

C2—C420

The elimination of c], CZ, c3 and c4 from the system (12) gives the second main condition:

AW — use) + ¢3T1%2)=0 s a w

where A = 23/2|l)|3/4 .

If (p0 << 1then condition (l3) takes the from ug])(s*) z uäz)(s*) and we have conditions (10) for the mo-

mentless system. If (p0 >> 1then it follows from equation (13) that 7503m) : 0 and the momentless solution

satisfies conditions (6). Consequently conditions (9) and (13) are more general than conditions (6). Conditions

(9) and (13) can be used for any values ofthe angle (p .

4 Numerical Results

As an example let us consider the axisymmetric vibrations of a cylindrical shell joined with a conical shell at a

small angle. The solution of the momentless system for the cylindrical shell is:

zzgl) :a1 cos(ks)+ a2 sin(ks) wg) :_v (“5”) k2 _ 741—”——— 14

Ä—l l—vz—Ä ( )

In the general case the momentless system for the conical shell has no analytical solution. For the problem at

issue the middle surface of the conical shell is close to the middle surface of the cylindrical shell. Therefore we

can use the solution of the momentless system for the cylindrical shell

use = 613005065) + a4 sin(ks) WE” =fiw> (15)
as the approximate solution for the conical shell. By substituting equations (14) and (15) into equations (5), (9)

and (13) we obtain the system of linear algebraic equations containing the four unknown constants

a1, a2, a3, a4:

M(7t)-a=0

Here a = (a1, a2, a3, a4) . The nonzero elements of the matrix M are:

mH 2 cos(ksl) m12 = sin(ksl) H123 : cos(ks2) m24 = sin(ksz)

m31 = ~Sin(ks*) m32 2 COS<kS>s<) [7133 : —I7’Z3] m34 : —m32

m41 z cos(ks„) m42 = sin(lm) m43 = —cos(ks*)—rm33 m44 = —sin(ks*)+rm32

r = o§(1—v2)k/[A(7t—1)]
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The parameter k0 is the root of the equation

detMOt) = 0 (16)

For shells with the paramters h = 0.001, 1| = 5* — s] = 2, [2 = 32 — s* = 2, v = 0.3 the radius of the

cylindrical shell is taken as unity. Table 2 contains the least values of the frequency parameter 7» for different

values of connection angle (p are given.

  

(p in degrees ÄO (approximate value of Ä) Ä (numerical calculations)

0 0.5048 0.5069

5 0.4617 0.4640

10 0.3997 0.4070

15 0.3540 0.3602

20 0.3231 0.3259

     

Table 2. The Frequency Parameter Ä vs. the Angle (p

In the second column the least root A0 of equation (16) is shown. Numerical results (third column) were ob-

tained by using Finite Element Method. Asymptotic and numerical results are in good agreement with each

other.
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