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Mathematical Modelling of Spatial Contact Interaction of a

System of Finite Cylindrical Bodies

A. S. Kravchuk

This paper deals with the mathematical modelling ofspatial contact interaction of a system offinite cylindrical

bodies. The approach significantly reduces the complexity of investigating the contact stress in practice. It

allows to define the influence of theform, the loading character and the material properties of the interacting

bodies on the distribution ofcontact stresses.

1 Introduction

A model of elastic contact of a system of finite cylindrical bodies is widely used in applications of engineering

mechanics. It forms a base for calculating a stress state of some parts of machines, such as plain bearings, hinges

(Jonson, 1989; Kovalenko, 1995; Levina, 1971).

For the first time the contact problem was solved by Hertz. He supposed that for the calculation of local stresses

each body may be considered as an elastic half-space loaded along a small elliptical area on its surface. Within

this assumption generally accepted by the theory of contact problems, the stresses which are concentrated near

the area of contact are investigated independently of their shape and the method of attaching. The results

received on the basis of Hertz's theory describe a stress state in a narrow set of the contact problem (Jonson,

1989; Muskhelishvily, 1966; Shtaerman, 1949). But its distinctive features are widely and easily used in

engineering calculation.

Further development of the contact interaction mechanics was connected, mainly, with lifting these restrictions

and with the broad implementation of analytical methods (method of complex potential and etc.). But

existenting investigations show that these methods can't be used in many cases of contact interaction of finite

cylindrical bodies due to the bulky character of mathematical transformations (Kovalenko, 1995; Teply, 1983;

Chernets,l996).

Significant progress in solving the contact problem is connected with the application of numerical methods.

Several software programs have been developed now to analyze a stress state of any bodies. However, certain

difficulties arise when using these programs to solve three-dimensional contact problems. In particular one must

take into account local geometric peculiarities of the investigated bodies, high cost of this software and the

required equipment. Therefore these investigations are too expensive to be widely used in engineering

calculations.

The present paper considers a method which allows to reduce the contact problems for cylindrical bodies to a

system of a two-dimension boundary problem and generalizes Hertz’s solution for two cylinders to the case of

variable load intensitiy. It considerably reduces complexity and cost for calculating the contact stress in practice.

The approach uses the method of complex potentials for an explicit approximate solution of the two—dimension

contact problem of an isotropic elastic disk and a plate with a cylindrical hole.

2 Statement of the Problem

Consider a system of elastic isotropic cylinders of finite length. Its axes are parallel and belong to the plane

YOZ. The axis OZ is the axis one of the cylinders. Force is acting on this system in the plane YOZ too. The

system is in elastic equilibrium. It is assumed that any cross—section of any cylinder remains plane after load.

Friction in areas of contact is not considered (Figure l).
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Figure 1. System of Three Elastic Finite Length Cylinders

3 Solving Auxiliary Problems

Any cross-section of two neighbouring cylinders realize the following interactions schemes:

- contact as specified by Hertz's theory (Figure 2);

- interior contact ofcylinders with similar radii (Figure 3),

In the first case the contact stress is described by the following equation (Jonson, 1989; Muskhelishvily, 1966):
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2Rr E1 E2

  

2 _ 2
[=2 PrR [l—v1 +1 v2]

7r(r+R) E1 E2

Here P is the intensity of load, R and r are the radii of curvature of the interacting bodies, E,(i = l, 2) are the

Young's moduli, v‚(i = l, 2) are the Poisson's ratios, 1 specifies the area of contact, (5(x) is the normal contact

stress.
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Figure 2. Scheme of Cylinders Location in Figure 3. Scheme of Bodies Location in Non—Hertz’s

Hertz’s Theory Theory of Interacting Cylinders
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Consider an elastic isotropic plate with a cylindrical hole of radius R. An elastic isotropic disk of radius r is put

into the hole. It will be assumed that 82, e / R (s = R — r > O) are small values which can be neglected. Force

P acts along the y — axis (Figure 3). Due to the fact that displacements are negligible in comparison with the

dimensions ofthe bodies in the area of contact specified by L one obtains:

(lerul)2 + (y1+1)1)2 = (x2+u2)2 + (y2+02—6)2 (1)

where

x1 = RCOS(C) yl = Rsin((;)

x2 :rcos(C) y2 = rsin(§) — 8
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um, u‚„(m = are components of displacements of plate with the hole (m = l) and for the elastic disk

(m = 2) ; 6 is the displacement of the disk center. Its easy to see that equation (1) reduces to

s + u1 cos(C) + 01 sin((;) : u2 cos(§) + (u2 —ö)sin(C)

and after transforming

 

s 2 8C sm(§) + 2 cos(§) + [ cos(§) + 6C2 sm(§)

 

6g ad

2 2 (2)

= — 2 %%sin(§) + 2 ag—gcos(g) + [(2:22 cos(§) + %sin(€)}

But on the contour of the hole we arrive at (Prusov, 1978)

1 au6m __ 1 2

+ Drill] _ _ Vm)66m _ Dm + Vm)6r>

m

where R,” = R(m=l) and Rm 2 r(m:2),V‚-,(i:1‚—2) are Poissons‘s ratios, E,-,(i = are Young's

moduli, Ge", (5, are normal components of stress. Then, using equations (2) and (3), we obtain

8 + %((1—Vi)591 _ “(I'M/JG”) +Ö—ÖQ (%COS(€)+%U—lsm(c))Ö ö a (4)

= ä((l-vg)c„ _ comer) + 6—C[aigcos<c>+algsin(c>]

It’s known that (Muskhelishvily, 1966)

=2[q>,,,(w>+m>,,,w]

09,1 — G, + 21'1"?" = 2esz [W CD'(w)+ \P(w)] (5)

zum (um + join): Kmq)”: (w)— chm (w)— w"! (w)

here = z (m =1), w = s (m = 2), um(m : are Lame‘s coefficients; i: J——1; Km 2 3 —4v‚„,W

q)‚„(w), w„‚(w) are Kolosov— Muskhelishvily complex potentials cp'(w)= dDm(w), w’(w)= w‚„(w) .

Then using equality (Teply, 1983)

  

(13(2) : K1 _ L J‘Gr(T)d’E

2n(l+K1) z 2711 T—Z

—1P 1 1P s 1 o,(§)d§ 1 o,(§)d§

cm): ——“— *j—————j <6)
27T(l+K2) s 27T(1+K2) r 2111 —s 47:! g

Q = Ir/R

and with equations (4) and (5), we arrive at the integral equation

I 6;,(I)d'r 1P [1 t j P
_ ._ z _ __ ___ _ _ _ b _
mi.- T_t Y16r(T) nYz t R2 Y37T Y4 Y58 (7)
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where

(1— v2 —2v§)E1Rr — (1—v1~2v§)E2R2

     

Y1 = 2(R2E2(1—v12)+ r2E1(1—v§))

_ (1+v2)Eer + (3—4v‚)(1+v‚)EzR2

Y2 4<R2E2(1—v12) + rzE,(1—v§))

(1+v2)eREl

h _ 8r(R2E2(1—vf)+r251(1—v§))

(l—v12)E2

YA : (RZEZ(1—v§)+r2El(1-v§))

: E1E2

2(R2E2(1—v12)+r2E1(1—vä))

i = —L im
R2 2m! ‘C

t Re'C c=Re”"0

where do is a contact half-angle.

The results of the investigations (Levina, 1971; Narodetzki, 1943) show that the approximate solution of

equation (7) can be expressed in the following form

N5 2 Y] 9
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7c oco — cos(oco)sin(0t0
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It's necessary to emphasize that for elastic constants of isotropic materials, which are widely used in machines,

the error of approximation (8) ofthe solution of the equation (7) with respect to 63mm) is less than 4 % .

It has been established that the received dependency of a half-angle of contact on the non-dimensional

parameter, introduced by I. Y. Staerman, is analogous to the dependencies, estabilished by M. I. Teply for the

state of plane deformation (Teply, 1983). This confirms a high efficiency of the approximate solution (8). In

addition it has been proved, that equation (8) describes a contact stress in the case of interaction of the cylinder

and a half—plane with a cylindrical cavity, whcn (x0 is less than E .

4 Solution of the Initial Problem

Let's return to the consideration of the initial problem. The principal approach is based on the superposition of

the boundary conditions. That means it is sufficient to represent a cylindrical body in terms of cross sections,

connected by an elastic brace, the flexural of which is defined by the parameters of the investigated body. Then

this allows to represent spatial distributions of the contact stress by the following equations:
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— when the cross section of the area of contact is small in comparison with the dimensions of the interacting

bodies:

2 2__ 1w

(‚(N) = ELGJI. + A]

2Rr E] E2

1(2) = 2 Elf—(Lilla + LT?)
1r(r+ R) E, 52

- when the cylinders have similar radii:

c‚(6‚z) = —q(z)—‘/—2:[y2% + cos(9)—cos(oc0)cos(%)

R oco - cos(ot0)sin(0tO

1[1+ cos(6) — cos(6) — cos(a0)

l + COS(OLO)

 

+2 z£+——i£(E(OL—O—)———]+4bz 5sln

‘1‘ it R(0t0—cos(0t0)sin(oc0)) Y ”4’ Y

0"0(2)

q(z) = —2R fc,(e,z)cos(e)de

o

R2 “0(7)

b(z) = ——n— jo,(e,z)de

where q(z) is the load intensity, defined from the solution of the problem of the theory of elasticity for the

section of the system by the plane YOZ.

The proposed approach simplifies the analysis of the investigated values, enables to take into account the

material properties, the loading features and to use a well—developed apparatus ofthe two-dimensional elasticity

theory. Three-dimensional picture of the contact stress distribution, normal to the bodies surface, can be drawn

in accordance with the developed calculation scheme (Figure 4, Figure 5).

  
Figure 4. Surface of Stress Distribution for an Figure 5. Stress Distribution for an

Exterior Contact of Cylinders Interior Contact of Cylinders

(see Figure l and Figure 2) (see Figure 1 and Figure 3)

5 Conclusions

A method which allows to reduce the contact problem for cylindrical bodies to a system of a two-dimension

boundary value problem has been considered. It generalizes Hertz's solution for two cylinders to case of variable

load intensity. lt considerably reduces the complexity and cost of investigation contact stress in practice.

Furthermore, with the help of the complex potentials method it delivers an explicit approximate solution of the

two-dimension contact problem for an isotropic elastic disk and a plate with a cylindrical hole.
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