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Free Convection about a Vertical Wavy Surface with Prescribed

Surface Heat Flux in a Micropolar Fluid

I. Pop, HS. Takhar, M. Kumari

An investigation on the free convection along a vertical wavy surface with prescribed surface heat flux in a

micropolar fluid has been carried out. By applying a suitable transformation of the governing equations of

continuity, momentum, microrotation and energy, we show that they can be reduced to a set of boundary layer

equations for the free convection flow along a vertical flat plate. The transformed equations are then solved

numerically using a very efficient finite—difi’erence method known as Keller—box scheme. The results obtainedfor

a Prandtl number Pr = I and various values of the parameters a (the amplitude of the wavy surface) and K

(micropolar parameter) reveal the influence ofthese parameters on theflow and heat transfer behaviour.

1 Introduction

Interest in studying the convective phenomena of momentum and heat transfer between a moving fluid and a

surface immersed in it stems from both theoretical and practical considerations. It is readily recognized that a

wealth of information is now available for convective heat transfer of Newtonian fluids under the most general

considerations of practical interest. Consequently, satisfactory means have evolved for the estimation of the

macroscopic (such as drag and heat transfer) as well as microscopic (e.g. velocity and temperature) characteristic

parameters in an envisaged application involving Newtonian fluids. Unfortunately, most fluids encountered in

chemical and allied processing applications do not adhere to the classical Newtonian postulate and accordingly

are known as non-Newtonian fluids. One particular class of materials of considerable practical interest is that

which exhibits certain microscopic effects arising from the local structure and microrotations of the fluid

elements known as microfluids, first introduced by Eringen (1966). As this model is not easily amenable the

theoretical treatment a subclass, known as micropolar fluids, was further proposed by Eringen (1972). Such

fluids contain dilute suspensions of rigid macromolecules with individual motions which support stress and body

moments and are subject to skin inertia.

The theory of micropolar fluids may form suitable non-Newtonian fluid models which can be used to study the

behaviour of lubricants, coloidal suspensions or polymeric additives, blood flow etc. This theory has generated a

lot of interest and many problems have been studied (see, for example, Ariman et al., 1973, 1974; Jena and

Mathur, 1981, 1982; Lien et a1.‚ 1986, 1990; Gorla and Takhar, 1987; Gorla, 1988, 1992; Wang and

Kleinstreuer, 1988; Moulic, 1989; Gorla et al., 1995; Rees and Bassom, 1996).

One of the limitations of all the above investigations is that the surfaces were considered flat or regular.

Relatively few studies have considered the effects of complex geometries such as wavy surfaces. Yao (1983)

was probably the first who analysed the Newtonian free convection flow associated with a wavy surface.

Recently, Chiu and Chou (1993, 1994) have used the transformation proposed by Yao (1983) to solve the

problem of free convection along a vertical wavy surface with a constant wall temperature in a micropolar fluid.

In the present paper, we consider the problem of steady free convection in the boundary layer of a micropolar

fluid along a vertical wavy surface with a constant heat flux rate qw , which is often approximated in practical

applications and is easier to measure in a laboratory. Of interest are the effects of the amplitude wavelength and

micropolar parameter K on the velocity, temperature and microrotation fields as well as on the surface

temperature. The formulation is valid for any wavy surface of small amplitude. Numerical results have been

obtained for a sinusoidal wavy surface using the Keller-box scheme (see, Cebeci and Bradshaw, 1984). The

results obtained show that the wall temperature varies periodically along the wavy surface and its amplitude

gradually decreases downstream where the boundary layer grows thicker. As a check of the numerical method

used in this paper, the known results of other authors are also reproduced. Comparison of these results shows

excellent agreement.
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2 Basic Equations

Consider a vertical wavy surface immersed in a micropolar fluid at the ambient temperature T.” as shown in

g‘ 3

Figure l.
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Figure 1. Physical Model and Coordinate System

 

We assume that the surface is described by

__ _ _ _ ‚ 2 ‘

y = 0(x) = a sm(—-LE) (1)

where J'c and y are the Cartesian coordinates and a— and L are the amplitude and the wavelength of the wavy

surface, respectively. It is also assumed that the surface is subjected to a constant heat flux rate qw normal to

the surface. The flow is considered to be steady and the Boussinesq approximation is applied. Under these

assumptions the governing equations (see Chin and Chou, 1993) are given by
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where ü and U are the velocity components along 7c and y axes, Tis the temperature, [—2 is the pressure, I?

is the microrotation, ge is the acceleration due to gravity, Pr is the Prandtl number, p is the density, ß is the
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thermal expansion coefficient, it and v are the dynamic and kinematic viscosity respectively, K is the vortex

viscosity, 7 is the spin-gradient viscosity, j is the micro-inertia density and V2 is the Laplacian operator. We

assume that yis given by (see Ahmadi, 1976)

v = (u + (7)

The boundary conditions appropriate for equations (2) to (6) are given by

— 1 85 Bü
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where k is the thermal conductivity and E is the unit vector normal to the wavy surface, which is given by

 

E = _ x 19

To transform equations (2) to (6), we first define the following dimensionless variables:
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where Gr = ge IS the Grashof number. When the variables (10) are substituted into equations (2)

to (6) and terms of small order in negative powers of Gr are neglected, with the assumption of large values of

Gr or boundary layer approximation, we obtain the following boundary layer equations for the problem under

consideration:
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where K = E is the micropolar parameter. The boundary conditions (8) become
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1 l

—B6 _Bu
=0 =1>=O 1+ 22— — — N : ——1+ox2—y u ( ox) 8y ( ) ay

(16)

y=<>o u=0 9:0 N=O p=0

which shows that equations (10) transform the wavy surface to a flat surface. Equation (12) indicates that g is

y

1

of order Gr_5 , which implies that the lowest order pressure gradient along the x axis is determined from the

inviscid solution. However, for the present problem this gives g—p = 0 „ Further? in order to eliminate the term

‚ x

1

Gr5 % from equations (12) and (13) we multiply equation (13) by 6x and the resulting equation is added to

y

equation (12). After some manipulation, we get
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This problem does not have a similarity solution and to obtain a solution for all x 2 O the governing equations

(11), (14), (15) and (17) have to be solved numerically. To obtain such a numerical solution we use the

variables
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where w is the stream function which is defined in the usual way (um) 2 The above

mentioned equations then become
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where primes denote partial differentiation with respect to t].

3 Results and Discussion

The non-linear boundary value problem governed by equations (19) to (22) is solved numerically using the

Keller-box method (see Cebeci and Bradshaw, 1984) and the numerical results have been obtained for

amplitudes of the wavy surface a = O (flat plate), 0.1 and 0.2, Prandtl number Pr = 1 and the micropolar

parameter K = O (Newtonian fluid), 1 and 5.

In order to assess the accuracy of the present method, we have applied it to the problem of free convection from

a vertical flat plate (a = O) with a constant heat flux in a Newtonian fluid (K = O) when Pr = 0.73 (air) and 6.7

(water). The results obtained are compared with those reported by Mahajan and Gebhart (1978). This

comparison is shown in Table 1 for the reduced wall temperature function h„(x) = h(x, 0) which is related to the

temperature at the wavy surface Tw by the relation

l

T — Ta, —

WOW = hw(x)

k

geßfifji“

where er 2—2— is the local Grashof number. The present results are found to be in excellent

v

agreement with those of Mahajan and Gebhart (1978) and therefore we are confident that the present results are

very accurate.
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Pr Mahajan and Gebhart Present results

(1978)

0.733 1.4798 1.4797

6.7 0.8417 0.8424

    

Representative velocity components u and t), temperature 6 and microrotation N profiles are shown in Figures 2

to 8 exhibiting the effects of the parameters a and K at two positions x = 1.5 (node) and x = 1.75 (trough) for

Pr = 1. It is worth mentioning that the behaviour between the profiles at x = 1 (node) and 1.5 (node) is similar

and so is the case between the profiles atx = 1.75 (trough) and x = 2.25 (crest). For convenience therefore, only

the casex = 1.5 and x = 1,75 are presented in this paper. These figures clearly show the effects of the

parameters a and K on the velocity, temperature and microrotation profiles. Thus, it is seen from Figures 2 to 5

that u is higher at the trough than at the node; the reverse situation happens for 1). This behaviour is to be

expected if we notice the presence of extra terms in equation (19) for the present problem in comparison with

the case of a flat plate (a = O). We also notice from Figures 8 and 9 that the microrotation profiles remain

Table l. Values of hw (x) for a = 0 (flat plate) and K = O (Newtonian fluid)

everywhere negative with a small overshoot from zero for higher values ofK.
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Figure 4. Normal Velocity Profile
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Figure 5. Normal Velocity Profiles
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Figure 8. Microrotation Profiles
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Figure 10. Variation of hw

with x for Pr = l

Values of the wall temperature function hw(x) defined in equation (23) for the cases of a Newtonian fluid

(K = 0) and a miCFOPOIBI flllid (K at 0) are given in Table 2 for a flat plate (a = 0) and a wavy surface (a at 0),

respectively, at different x positions. Also the variation with x of h„(x) is illustrated in Figure 10, where the
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results of Moulic and Yao (1989) for the case of a Newtonian fluid (K = O) have also been included. We notice

again an excellent agreement between the present results and those known from literature (Moulic and Yao,

1989). It is seen from Table 2 that the waviness of the surface increases the wall temperature, irrespective of

whether the fluid is Newtonian or micropolar. Further, Figure 10 shows that hw(x) varies according to the slope

of the wavy surface. However, the amplitude of hw(x ) gradually decreases downstream where the boundary

layer grows thick. This is due to (i) the effect of the centrifugal forces, the third term of equation (19), and (ii)

the alignment of the buoyancy force with respect to the wavy surface, as indicated by the fourth term of

equation (19). Finally, we notice from Table 2 and Figure 10 that values of h„(x) are greater for micropolar

fluid (K i 0), than those for a Newtonian fluid (K = 0). This observation might be of considerable interest in

several practical applications of micropolar fluids.

  

Newtonian fluid K=1 K=S

(K=0)

x a=0.0 a=0.1 a=0.2 5:0.0 1:0.1 a=0.2 1:0.0 a=0.1 a=0.2

 

1.500 (node) 1.3585 1.4083 1.5217 1.4320 1.4831 1.5982 1.6185 1.6771 1.8117

1.625 1.3585 1.4121 1.5307 1.4319 1.4907 1.6189 1.6184 1.6916 1.8543

1.750 (trough) 1.3585 1.4061 1.5137 1.4318 1.4846 1.6022 1.6184 1.6864 1.8396

1.875 1.3585 1.4018 1.5009 1.4318 1.4764 1.5763 1.6183 1.6719 1.7938

2.000 (node) 1.3585 1.4078 1.5201 1.4317 1.4825 1.5970 1.6183 1.6771 1.8121

2.125 1.3585 1.4112 1.5279 1.4317 1.4894 1.6154 1.6183 1.6901 1.8502

2.250 (crest) 1.3585 1.4066 1.5147 1.4317 1.4848 1.6028 1.6182 1.6866 1.8403

2.375 1.3585 1.4025 1.5029 1.4316 1.4772 1.5791 1.6182 1.6735 1.7987

2.500 (node) 1.3585 1.4074 1.5191 1.4316 1.4822 1.5964 1.6182 1.6772 1.8128

2.625 1.3585 1.4106 1.5261 1.4316 1.4886 1.6132 1.6182 1.6891 1.8475

2.750 (trough) 1.3585 1.4069 1.5154 1.4315 1.4849 1.6033 1.6182 1.6868 1.8408

2.875 1.3585 1.4030 1.5043 1.4315 1.4779 1.5812 1.6181 1.6747 1.8023

3.000(node) 1.3585 1.4072 1.5184 1.4315 1.4820 1.5960 1.6181 1.6775 1.8137

      

Table 2. Values of hw(x) for Pr = 1

4 Conclusions

In summary, the present paper describes the free convection along a vertical wavy surface with a constant heat

flux heating in a micropolar fluid. New variables to transform the complex geometry into a simple shape were

proposed and a very efficient implicit finite-difference (Keller-box) scheme was employed to solve the boundary

layer equations. Based on the numerical results, we have the following conclusions in the range of the

parameters:

1. An increasing wave amplitude parameter a leads to an increase of wall temperature hw(x), irrespective

of whether the fluid is Newtonian or micropolar.

2. The influence of the micropolar parameter K is most pronounced for the flow field and microrotation

profiles.
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