Anwendung der Rißschließungsintegralmethode zur numerischen Simulation von Ermüdungsrißbahnkurven

H. Theilig

Im vorliegenden Beitrag wird gezeigt, daß auf der Grundlage einer stückweise gekrümmten Approximation die numerische Simulation von Ermüdungsrißbahnkurven ebener Probleme bei proportionaler Belastung in der Genauigkeit verbessert werden kann. Die hierzu notwendigen Größen werden durch eine bruchmechanisch begründete Prediktor-Korrektor-Rechnung bereitgestellt. Ein Vergleich von berechneten und experimentell ermittelten Rißbahnkurven für einen Scheibenstreifen mit Bohrung unter Querkraftbiegung bestätigt die Leistungsfähigkeit der entwickelten Simulationsmethode.

1 Einleitung

Rißbildungen findet man bei zyklisch belasteten Bauteilen und Konstruktionen bevorzugt in Bereichen mit komplizierter Geometrie und unsymmetrischer Belastung. Die sich unter derartigen Bedingungen ausbildenden Risse ändern in der Regel während des Wachstums die Form ihrer Rißfront und sind zusätzlich noch räumlich gekrümmt. Im Falle einer notwendigen bruchmechanischen Bauteilbewertung bedarf es somit der Kenntnis der mit Bauteilgeometrie und Belastung verträglichen Rißgeometrie, um das zu erwartende Versagensverhalten ohne einen sich bereits aus der geometrischen Modellierung ergebenden Fehler bestimmen zu können.

Für die numerische Berechnung von Rißbahnkurven bei ebenen Problemen mit proportionaler Belastung verwendet man in der Regel Verfahren, die auf der Grundlage einer wiederholten geradlinigen Rißerweiterung mit einer aus dem erreichten aktuellen Spannungsintensitätsverhältnis K_{II}/K_{I} berechneten Richtungsänderung die entstehende Rißgeometrie als Polygonzug annähern (Bergquist und Gnex, 1978; Theilig, 1979; Linnig, 1993; Theilig und Buchholz, 1994). In der vorliegenden Arbeit wird auf der Grundlage einer stückweise gekrümmten Approximation eine verbesserte Bahnkurvensimulation vorgestellt und verifiziert, wobei ausschließlich auf bruchmechanische Größen zurückgriffen wird, die mit der Modifizierten Virtuellen Rißschließungsintegralmethode (Buchholz, 1984; Krishnamurty u. a., 1985) berechnet werden können.

2 Rißausbreitungskriterium

Bei einem ebenen, linear elastischen Rißproblem unter Mixed-Mode-Beanspruchung kann der Spannungszustand vor der Rißspitze unter Einbeziehung nichtsingulärer Anteile mit

$$\sigma_{11}(x_1, 0) = \frac{k_{\rm I}}{\sqrt{2\pi x_1}} + T + b_{\rm I} \sqrt{\frac{x_1}{2\pi}} + O(x_1) \tag{1}$$

$$\sigma_{22}(x_1,0) = \frac{k_1}{\sqrt{2\pi x_1}} + b_1 \sqrt{\frac{x_1}{2\pi}} + O(x_1)$$
⁽²⁾

$$\sigma_{12}(x_1,0) = \frac{k_{\rm II}}{\sqrt{2\pi x_1}} + b_{\rm II} \sqrt{\frac{x_1}{2\pi}} + O(x_1)$$
(3)

beschrieben werden. Dabei sind k_{I} und k_{II} die Spannungsintensitätsfaktoren des gegebenen Risses. Die Koeffizienten *T*, b_{I} und b_{II} charakterisieren die berücksichtigten nichtsingulären Anteile. Es ist bekannt, daß ein Riß unter derartigen Beanspruchungsbedingungen nach einer anfänglichen Richtungsänderung bei weiterem Wachstum einer gekrümmten Bahnkurve folgt, Bild 1.

Bild 1. Riß mit abgeknickter und gekrümmter Rißbahn

Die Richtungsänderung φ_0 zu Beginn des Wachstums kann auf der Grundlage von verschiedenen Mixed-Mode-Kriterien für proportionale Belastungsverhältnisse als Funktion des Spannungsintensitätsverhältnisses k_{II}/k_{I} und gegebenenfalls der Querkontraktionszahl v angegeben werden (Richard, 1985). Für kleine Spannungsintensitätsverhältnisse $0 < |k_{II}/k_{I}| < 0.1$ erhält man unabhängig vom verwendeten Kriterium die Richtungsänderung aus

$$\varphi_0 = -2 k_{\rm II}/k_{\rm I} \tag{4}$$

Es korrespondiert dies mit jener Richtung, bei der der sich ausbreitende Riß an der Rißspitze lokale Symmetrie in der Beanspruchung ($K_{II} = 0$) hat. Für einen homogenen und isotropen Werkstoff kann diese Bedingung neben den bruchmechanischen Festigkeitskriterien als eine notwendige zusätzliche Bedingung für das Rißwachstum verallgemeinert werden (Goldstein und Salganik, 1974). Ein kontinuierlich wachsender Riß bildet demnach eine Geometrie aus, bei der zu jedem Zeitpunkt unter den gegebenen momentanen Belastungsbedingungen an der sich bewegenden Rißspitze eine reine Mode I-Beanspruchung vorliegt. Die Spannungsverteilung vor der Rißspitze eines fortschreitenden Risses läßt sich damit in einem allgemeinen Fall auf

$$\sigma_{11}\left(x_{1}^{*},0\right) = \frac{K_{\mathrm{I}}}{\sqrt{2\pi x_{1}^{*}}} + T^{*} + b_{\mathrm{I}}^{*}\sqrt{\frac{x_{1}^{*}}{2\pi}} + O\left(x_{1}^{*}\right)$$
(5)

$$\sigma_{22}(x_1^*, 0) = \frac{K_{\rm I}}{\sqrt{2\pi x_1^*}} + b_{\rm I}^* \sqrt{\frac{x_1^*}{2\pi}} + O(x_1^*)$$
(6)

$$\sigma_{12}(x_1^*, 0) = b_{\mathrm{II}}^* \sqrt{\frac{x_1^*}{2\pi}} + O(x_1^*)$$
(7)

reduzieren. Das mitbewegte kartesische Koordinatensystem (x_1^*, x_2^*) befindet sich dabei mit seinem Ursprung in der aktuellen Rißspitze. Die x_1^* -Achse ist Tangente der Bahnkurve in der Rißspitze. Es ist einzusehen, daß eine kontinuierliche Richtungsänderung der Bahnkurve eines sich ausbreitenden Risses offensichtlich nur durch die nichtsingulären Spannungen in der Rißspitzenumgebung beschrieben werden kann.

3 Rißbahnkurvenberechnung

Nach Sumi (1985a, 1990b) erhält man die Spannungsintesitätsfaktoren K_{I} und K_{II} für einen geraden Riß mit einer beliebig vorgegeben, schwach abgeknickten und gekrümmten Erweiterung der Form

$$l(x_1) = \alpha x_1 + \beta x_1^{3/2} + \gamma x_1^2 + O(x_1^{5/2})$$
(8)

gemäß Bild 2 aus

$$K_{\rm I} = \left(k_{\rm I} - \frac{3}{2}\alpha k_{\rm II}\right) - \frac{9}{4}\beta k_{\rm II} h^{1/2} + \left[\frac{b_{\rm I}}{2} - \frac{5}{2}\alpha b_{\rm II} - 3\gamma k_{\rm II} + k_{\rm I} \bar{k}_{11} - \alpha k_{\rm I} \left(\bar{k}_{12} + \frac{3}{2} \bar{k}_{21}\right) + k_{\rm II} \bar{k}_{12} - \alpha k_{\rm II} \left(\bar{k}_{11} + \frac{3}{2} \bar{k}_{22}\right)\right] h + O(h^{3/2})$$

$$K_{\rm II} = \left(k_{\rm II} - \frac{1}{2}\alpha k_{\rm I}\right) - \left(\frac{3}{4}\beta k_{\rm I} - 2\sqrt{\frac{2}{\pi}}\alpha T\right) h^{1/2} + \left[\frac{b_{\rm II}}{2} - \frac{1}{4}\alpha b_{\rm I} - \frac{3\sqrt{2\pi}}{4}\beta T + \gamma k_{\rm I} + k_{\rm I} \bar{k}_{21} + \alpha k_{\rm I} \left(\frac{1}{2} \bar{k}_{11} - \bar{k}_{22}\right) + k_{\rm II} \bar{k}_{22} + \alpha k_{\rm II} \left(\frac{1}{2} \bar{k}_{12} - \bar{k}_{21}\right)\right] h + O(h^{3/2})$$

$$(10)$$

wobei die Größen $\overline{k}_{11}, \overline{k}_{12}, \overline{k}_{21}, \overline{k}_{22}$ den Einfluß der Randbedingungen repräsentieren. Mit den Koeffizienten α , β und γ bestimmt man die Geometrie der betrachteten Rißerweiterung.

Bild 2. Formfunktion für einen schwach abgeknickten und gekrümmten Riß

Das Kriterium der lokalen Symmetrie fordert für einen sich ausbreitenden Riß, daß der Spannungsintensitätsfaktor K_{II} in jeder Rißspitzenposition während des Wachstums verschwindet. Die Formparameter einer natürlichen Rißerweiterung ergeben sich damit aus

$$\alpha = -2k_{\rm II}/k_{\rm I} \tag{11}$$

$$\beta = \frac{8}{3} \sqrt{\frac{2}{\pi}} \frac{T}{k_{\rm I}} \alpha \tag{12}$$

$$\gamma = -\left(k_{\rm II}\,\bar{k}_{22} + k_{\rm I}\,\bar{k}_{21} + \frac{b_{\rm II}}{2}\right)\frac{1}{k_{\rm I}} + \left\{\left[k_{\rm I}\left(2\,\bar{k}_{22} - \bar{k}_{11}\right) + \frac{b_{\rm I}}{2}\right]\frac{1}{2\,k_{\rm I}} + 4\left(\frac{T}{k_{\rm I}}\right)^2\right\}\alpha\tag{13}$$

Dabei ist α die schon von den Mixed-Mode-Bruchkriterien bekannte Bezichung (4) für den Abknickwinkel bei kleinem Spannungsintensitätsverhältnis.

Für einen anfänglich unter lokaler Symmetrie befindlichen Riß, d. h. $k_{II} = 0$, findet man weiter $\alpha = \beta = 0$, wodurch die bruchmechanisch begründete Formfunktion in einem solchen Fall mit

$$l(x_1) = \gamma x_1^2 \tag{14}$$

gegeben ist. Aus Gleichung (13) erhält man dann

$$\gamma = -\left(\frac{b_{\mathrm{II}}}{2} + k_{\mathrm{I}}\,\overline{k}_{21}\right)\frac{1}{k_{\mathrm{I}}}\tag{15}$$

und mit Gleichung (8) die Abhängigkeit für den Spannungsintensitätsfaktor aus

$$K_{\mathrm{I}} = k_{\mathrm{I}} + \left(\frac{b_{\mathrm{I}}}{2} + k_{\mathrm{I}}\,\overline{k}_{11}\right)\,h\tag{16}$$

Betrachtet man nun im gegebenen Fall die zugeordnete virtuelle Rißerweiterung in Richtung der x_1 -Achse, dann erhält man eine Mixed-Mode-Beanspruchung mit Spannungsintensitätsfaktoren gemäß

$$\overline{K}_{\mathrm{I}} = k_{\mathrm{I}} + \left(\frac{b_{\mathrm{I}}}{2} + k_{\mathrm{I}}\,\overline{k}_{11}\right) h \qquad \overline{K}_{\mathrm{II}} = \left(\frac{b_{\mathrm{II}}}{2} + k_{\mathrm{I}}\,\overline{k}_{21}\right) h \tag{17}$$

Aus den Gleichungen (15) und (16) findet man $K_{I}(h) = \overline{K}_{I}(h)$ als Konsequenz der vorausgesetzten schwachen Krümmung. Für einen Abschnitt einer stetigen natürlichen Rißbahnkurve mit einem gewählten Δh gilt damit gemäß Bild 3

$$\Delta \varphi = -2 \frac{\Delta \overline{K}_{\Pi}}{k_{\Pi}} \qquad \Delta l = -\frac{\Delta \overline{K}_{\Pi}}{k_{\Pi}} \Delta h \qquad \Delta a \approx \Delta h \left[1 + \frac{2}{3} \left(\frac{\Delta \overline{K}_{\Pi}}{k_{\Pi}} \right)^2 - \frac{2}{5} \left(\frac{\Delta \overline{K}_{\Pi}}{k_{\Pi}} \right)^4 \right] \tag{18}$$

Demnach ist unter Maßgabe der Bedingung $K_{\text{II}} = 0$ die Änderung des Anstiegs und des Funktionswertes einer natürlichen Rißbahnkurve innerhalb eines Abschnittes Δa aus dem $\Delta K_{\text{II}} \neq 0$ der zugeordneten virtuellen tangentialen Rißerweiterung Δh berechenbar.

Bild 3. Stetige gekrümmte Rißausbreitung

Im Falle vorliegender proportionaler Belastung kann somit nach Bild 4 die Vorausberechnung einer Rißbahn über die wiederholte Berechnung der Spannungsintensitätsfaktoren für eine virtuelle tangentiale Rißerweiterung mit einem wählbaren Δh als Prediktorschritt und der daraus resultierenden Ermittlung der dazugehörenden Bahndaten im Sinne einer Korrektorrechnung erfolgen. Für einen Schritt *j* erhält man die notwendigen Informationen für die stückweise quadratische Approximation gemäß

$$\varphi_{j+1} = \varphi_j - 2 \frac{\Delta \overline{K}_{\Pi_j}}{K_{\Pi_{j-1}}} \quad \Delta l_j = -\frac{\Delta \overline{K}_{\Pi_j}}{K_{\Pi_{j-1}}} \Delta h_j \qquad a_j = a_{j-1} + \left[1 + \frac{2}{3} \left(\frac{\Delta \overline{K}_{\Pi_j}}{K_{\Pi_{j-1}}}\right)^2 - \frac{2}{5} \left(\frac{\Delta \overline{K}_{\Pi_j}}{K_{\Pi_{j-1}}}\right)^4\right] \Delta h_j \qquad (19)$$

Bild 4. Analyse einer stetigen Rißbahnkurve mit Berechnung von Richtungs- und Funktionswertänderung

Verzichtet man auf die Korrektur des Funktionswertes, erhält man das bekannte Standardverfahren mit schrittweise geradliniger Näherung. Es muß allerdings darauf hingewiesen werden, daß die in diesem Zusammenhang oft praktizierten Konzepte mit Mixed-Mode-Interpretation auf der Grundlage des erreichten aktuellen Spannungsintensitätsverhältnisses und der Anwendung des Richtungskriteriums einer Bruchhypothese nach Gleichung (4) aus der Sicht der Gleichungen (12) und (15) sowie (20) bzw. (21) nicht korrekt sind.

Bild 5. Analyse einer stetigen Rißbahnkurve über Richtungsänderung ohne Funktionswertkorrektur

Bei der numerischen Realisierung des Verfahrens ist somit eine wiederholte Berechnung des Spannungsintensitätsfaktors $K_{\rm I}$ und der Änderung $\Delta \overline{K}_{\rm II}$ notwendig, die mit verschiedenen FEM-Konzepten realisiert werden kann. Als besonders leistungsfähig hat sich hier die Modifizierte Virtuelle Rißschließungsintegralmethode erwiesen (Buchholz, 1984; Krishnamurthy u.a., 1985). Bei durchgehender Verwendung von Standardelementen und gleichzeitiger Vermeidung von weitergehenden Netzverfeinerungen im Rißspitzenbereich werden hier sehr gute Lösungen für die nach Modus I und Modus II zu trennende Gesamtbeanspruchung mit den bei FEM-Analyse anfallenden Primärergebnissen ohne zusätzlichen Aufwand gefunden. Zur Berechnung der Spannungsintensitätsfaktoren werden bei dem genannten Verfahren die separierten virtuellen Energiefreisetzungsraten aus den im lokalen Rißspitzenkoordinatensystem berechneten Verschiebungen und Knotenkräften nach Bild 6 ermittelt.

Bild 6. Modifizierte Virtuelle Rißschließungsintegralmethode

Mit den Festlegungen gemäß Bild 6 gelten im Falle ebener isoparametrischer Elemente mit 8 Knoten für die virtuellen Energiefreisetzungsraten zur Berechnung der Spannungsintensitätsfaktoren die Beziehungen:

$$\overline{G}_{I} = \frac{1}{2\Delta ht} \left(F_{2,i} \Delta u_{2,i-1} + F_{2,i+\frac{1}{2}} \Delta u_{2,i-\frac{1}{2}} \right) \qquad \Delta \overline{G}_{II} = \frac{1}{2\Delta ht} \left(F_{1,i} \Delta u_{1,i-1} + F_{1,i+\frac{1}{2}} \Delta u_{1,i-\frac{1}{2}} \right)$$
(20)

3 Numerische Ergebnisse

Die Eignung des vorgestellten Verfahrens wurde durch erste grundlegende numerischen Untersuchungen (Theilig u.a., 1996) im Vergleich zu vorliegenden experimentellen Befunden für eine abgesetzte Querkraftbiegeprobe (Theilig, 1979) nachgewiesen. Weitere Berechnungen wurden auf der Grundlage von neueren experimentellen Ergebnissen zu gekrümmten Ermüdungsrissen (Kittelmann, 1993) in ebenfalls auf Querkraftbiegung belasteten Proben gemäß Bild 7 durchgeführt.

Bild 7. Gekerbte Querkraftbiegeprobe mit Bohrung

Die Analysen wurden für die mit der Kerblage l_k = 65 mm bei Schwellbeanspruchung erzeugten Ermüdungsrisse durchgeführt. Bild 8 zeigt das verwendete FEM-Modell und den Ausschnitt der Vernetzung für einen ausgewählten Zustand einer Simulationsrechnung. Bei jedem Berechnungsschritt wurde die Rißspitze mit jeweils vier quadratisch geformten 8-Knoten-Elementen der Kantenabmessung Δh umgeben. Zur Einschätzung des Konvergenzverhaltens wurden für die Berechnungen die Schrittweiten $\Delta h = 2mm$ und $\Delta h = 1mm$ gewählt.

Bild 8. FEM-Modell mit Vernetzung für einen ausgewählten Simulationszustand

Zum Vergleich erfolgten zusätzlich Analysen auf der Grundlage der gegenwärtig oft genutzten Lösungsstrategien mit einer stückweise geradlinigen Rißerweiterung unter Berücksichtigung einer aus dem aktuellen Spannungsintensitätsverhältnis über Gleichung (4) berechneten Richtungsänderung. Das Bild 9 zeigt die erhaltenen numerischen Ergebnisse im Vergleich zu den experimentellen Befunden.

Bild 9. Berechnete Rißbahnkurven im Vergleich zu den experimentellen Ergebnissen, a) Simulation mit Mixed-Mode-Interpretation nach Gleichung (4), b) Simulation mit Richtungsänderung ohne Funktionswertkorrektur, c) Simulation mit Richtungsänderung und Funktionswertkorrektur

Die Berechnungsergebnisse zeigen, daß es bei den gewählten Schrittweiten im Falle der beiden Simulationsrechnungen mit Polygonzugapproximation (Bild 9a,b) bei wachsender Rißlänge zu einem Abwandern der numerischen Lösung kommt und dadurch das Versagensverhalten im konkreten Fall nicht richtig beschrieben wird. Konvergenz ist aber bei kleiner werdenden Schrittweiten zu erwarten. Im Falle einer Nutzung dieser Simulationsstrategien sind daher Mehrfachrechnungen mit kleiner werdenden Schrittweiten zur Einschätzung der Treffsicherheit der Lösung in der Regel angezeigt.

Die Anwendung der beschriebenen verbesserten Methode zeigt im Vergleich zu den experimentellen Befunden sehr gute Ergebnisse. Die weitaus geringere Anfälligkeit bezüglich der Wahl der Schrittweite ist offensichtlich. Bei vergleichsweise großen Schrittweiten findet man im gegebenen Fall eine sehr gute Konvergenz, die sich nach den bisher gemachten Erfahrungen verallgemeinern läßt. Das Berechnungskonzept ist damit für eine Erweiterung auf dreidimensionale Rißprobleme besonders geeignet

Als ein nicht zu unterschätzender Vorteil kann abschließend das vergleichsweise einfache und übersichtliche Vernetzungskonzept genannt werden. Man kann sich hier an der gewählten Schrittweite orientieren. Es sollte dabei mit der Vernetzungsstrategie lediglich sichergestellt werden, daß im Rißspitzenbereich keine durch das numerische Modell bedingten Unsymmetrien entstehen. Die vorgestellten Ergebnisse weisen letztendlich auch auf die Leistungsfähigkeit der Modifizierten Virtuellen Rißschließungsintegralmethode hinsichtlich der Berechnung von Spannungsintensitätsfaktoren hin.

4 Zusammenfassung

Auf der Grundlage des Kriteriums der lokalen Symmetrie wurde eine verbesserte Methode zur Rißbahnkurvenberechnung bei proportionaler Belastung vorgestellt und im Vergleich mit vorliegenden experimentellen Befunden erprobt. Die vorliegenden numerischen Untersuchungen zeigen, daß die entwickelte Prediktor-Korrektor-Simulationsstrategie mit einer stückweise quadratischen Approximation der Bahnkurve äußerst leistungsfähig ist. Die FEM-basierte Analyse unter Anwendung der Modifizierten Virtuellen Rißschließungsintegralmethode zur Berechnung der Spannungsintensitätsfaktoren zeigt auch bei größeren Schrittweiten eine sehr gute Konvergenz.

Danksagung

Der Verfasser dankt Herrn Dr.-Ing. F.-G. Buchholz für die wertvollen Disskussionen zur Anwendung der Modifizierten Virtuellen Rißschließungsintegralmethode sowie Herrn Dipl.-Ing. Ralph Döring für die Durchführung der numerischen Berechnungen.

Literatur

- 1. Buchholz, F.-G.: Improved Formulae for the Finite Element Calculation of the Strain Energy Release Rate by the Modified Crack Closure Integral Method. In: Accuracy, Reliability and Training in FEM-Technology (I. Robinson, ed.), Robinson and Associates, Dorset, (1984), pp. 650-659.
- 2. Bergkvist, H., Gnex, L.: Curved crack propagation. International Journal of Fracture, 5, (1978),429-441.
- 3. Goldstein, R.V., Salganik, R.L. Brittle Fracture of Solids with Arbitrary Cracks. International Journal of Fracture, 10, (1974), 507-527.
- 4. Kittelmann, T.: Experimentelle Untersuchungen zur Entwicklung gekrümmter Ermüdungsrisse in Proben unter Querkraftbiegung. Diplomarbeit, Technische Hochschule Zittau, (1993).
- Krishnamurthy, T., Rammamurthy, T.S., Vejayakumar, K., Dattaguru, B.: Modified Crack Closure Integral Method for Higher Order Finite Elements. In: Finite Elements in Computational Mechanics (T.Kant, ed.), Pergamon Press, Oxford, (1985), pp. 891-900.
- Linnig, W.: Some Aspects of the Prediction of Fatigue Crack Path. In: Mixed-Mode Fatigue and Fracture, ESIS 14. (H. P. Rossmanith and K.J. Miller, eds.), Mechanical Engineering Publications, London, (1993), pp. 201-215.
- 7. Sumi, Y., Nemat-Nasser, S., and Keer, L. M.: On crack branching and curving in a finite body. International Journal of Fracture, 21, (1983), 67-79.
- 8. Sumi, Y.: Computational Crack Path Prediction. Theoretical and Applied Fracture Mechanics, 4, (1985), 149-156.
- 9. Sumi, Y.: Computational Crack Path Predictions for Brittle Fracture in Welding Residual Stress Fields. International Journal of Fracture, 44, (1990), 189-207.
- Theilig, H.: Ein Verfahren zur Berechnung der Bahnkurve eines Ermüdungsrisses mit Hilfe der Finite-Elemente-Methode. In: Vorträge zum Problemseminar Bruchmechanik, TU Dresden, Dresden, Vol. 1/79, (1979), pp. 41-51.
- Theilig, H., Döring, R., Buchholz, F.-G.: A Higher Order Fatigue Crack Paths Simulation by the MVCCI-Method. In: Advances in Fracture Research, ICF9 (B. L. Karihaloo, Y.-W. Mai, M. I. Ripley, R. O. Ritchie, eds.), Pergamon, Amsterdam-Oxford-New York-Tokyo-Lausanne, Volume 4, (1997), pp. 2235-2242.

Anschrift: Prof. Dr.-Ing. habil. Holger Theilig, Fachbereich Maschinenwesen, Hochschule für Technik, Wirtschaft und Sozialwesen Zittau/Görlitz (FH), Theodor-Körner-Allee 16, D-02763 Zittau