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The Reliability Prediction of Structures with Random Parameters

Subjected to Stationary Stochastic Input

V. A. Zhovdak. S. P. Iglin, I. V. Mishchenko

The structural elements reliability prediction problem is investigated. At random loads, structure parameter

randomness and fatigue failures are taken into account in this paper. External loads are assumed to be a

vector space—time random field, and the parameters of the structures investigated are assumed to be random

variables with known probabilistic characteristics. The reliability prediction problem includes three stages. At

the first stage, the stochastic dynamics problem is solved using correlation theory relations. It concerns the

definition of the stress-strain state (SSS) characteristics conditional correlation function and power spectral

density (PSD) taking account of external random loads with the fixed parameters of the investigated structure.

At the second stage, the SSS correlation functions and PSDs are defined taking account of structural element

randomness. At the third stage, the reliability characteristics definition problem due to fatigue failures is

solved.

l Introduction

Many civil engineering structures are subjected to cyclic random loads (Bolotin, 1979), which may lead to

fracture due to fatigue damage accumulation. Besides, the structure parameters are random as a consequence of

manufacture imperfection, structure material physical properties non-homogenity and other random factors.

The mentioned factors lead to the necessity in the structure’s design to take into account the randomness of

external loads and structural properties. At present the Finite Element Method (FEM) is widely used to

investigate various complicated structural elements. This method may be used effectively to solve the reliability

problems due to fatigue failures. These failures occur in the structural elements under external loads given as a

random field and structure random parameters given as a random variables vector.

The phenomenological approach using various kinetic equations for harmonic loads is to describe a cumulative

fatigue damage measure (Pavlov, 1988; Bolotin, 1984). Kinetic equations may be utilized in the case of

broadband random loads if an initial process leads to a process with an equal-in-damage effect. The Markov

process mathematical means are widely used to solve the reliability problem using kinetic equations describing

a damage measure.

Accordingly, in this paper the structural elements reliability prediction approach is being worked out taking

into account external loads and structure property randomness using FEM and Markov process theory.

2 The Stochastical Dynamics Problem Solution of 2 Structure with Deterministic Parameters

The stochastical dynamics problem dealt with here is for deterministic structures subjected to an external input

as a vector space—time random field. The external load field intensity vector F(r,t) is assumed to be stationary

on a time coordinate and homogeneous on a space coordinate. It is defined by the mean value mF = < F(r,t)>

and the correlation tensor

KF(r1.t1;r1.r,)=< F(r,,tl)F(r3.13)>: K,_—(p.'c)= JSF (p,w)e’v‘”‘dw (2.1)

with 12!: —t,; p: rZ —r‚; and where <-> denotes the expected value operation; Ftr,t):F(r,t)—«mp;

S,— (pm) denotes the time PSD. possessing the correlation tensor property with respect to the variable u).
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One of the simplest models of a random external load vector field F(r,t) is

Fm) z m) F20) (2.2)

where F(r,t) is a separable function of t and r. In the particular case the external loads depend on the time

coordinate only F(r,r) = F(t) which is a vector random function.

After the finite element diseretization a matrix differential equation describing a structural element random

vibration is given by

MY(t) + CY(t) + K Y(t) = X(t) (2.3)

where M, C, K denote mass, damping, and stiffness matrices respectively having random parameters

Si(i=1,...,m), while X(t),Y(t) are the external nodal input and generalized nodal displacements n—

dimensional vectors, respectively, components of which are random functions with respect to a time coordinate.

A damping matrix C is assumed to be present as a linear combination of the matrices K and M.

C = ß‚M +ß2K . (2-4)

where ßI and [32 denote the internal and external friction factors.

In equation (2.3) mass, damping, and stiffness matrix coefficients have the random parameters S as

independent random variables with given probabilistic characteristics: mean value my ‚ variance of , and

probability density function (PDF) f,»(s‚»)‚ The parameters S„(i = mentioned form the vector S and

relate the inertia, stiffness and geometric properties or material physical properties of each structural element

considered (Gallagher, 1984).

[f a structure is subjected to a vector distributed load characterized by the intensity vector F(r,t), a component

of which is to be the random stationary homogeneous field with given probabilistic characteristics, one can

obtain the equivalent nodal load vector X ( t) according to FEM general theory.

Let us consider an i—th finite element which is assumed to be subjected to a uniformly distributed surface load

F(r„t) (r is the center of gravity coordinate). In this case the equivalent nodal load vector for the i—th
1

element may be presented as

X, 2 I870) F(r. I)dr (2.5)

ö
l

where 5, is the element cross-section. B,(r) denotes the matrix connected the vector u, of the generalized

displacements in any i—th element point with the generalized nodal displacements vector Y, . Since the load

intensity F(r‚ t) in the i—th element limits is assumed to be constant, the expression (2.5) can be written as

Xi(1)=il3f(r) FÜNF? Firm) (2.6)

The full vector Xtt) of the structure nodal loads is formed by the vectors X] defined by equation (25). and

furthermore it may be presented in the form

X(z) : A F(r) (2.7)

where A is the matrix formed by integrating equation (2.6) and passing from the local coordinate system to the

global one. while F(r) denotes the random process vector components of which to be the values of the vector
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field F(r‚t) in the i-th element center of gravity components r: r, . So, the random process vector F(r,t)

correlation matrix is given by the correlation tensor K F (p, t) according to equation (2.1).

Let us assume that the mean value of the external load field is equal to zero. m; = O . Then in accordance with

equation (2.7) mX : 0 and its correlation matrix may be presented by

KX(t„ r2) = KX (I)=< X(t1)X(tz)>= A KF (p,‘C)AT (2.8)

The adopted expression allows a possibility to form the generalized nodal load X(t) correlation matrix with

respect to given distributed load field F(r,t) characteristics (these loads X(t) are in the right hand side of general

equation (2.3)). The vector X(t) PSD is defined as Fourier transform of the correlation matrix KX (I)

1 +°° 1 +°°
5X ((0) = —— JK X (r) e‘md‘c = A — J'KFm 12"de AT : A SF(w)AT (2.9)

211; 21: V

Expression (2.9) allows to determine the usual and mutual PSDs of the nodal load vector X(t) components

using the field F (r, t) time PSD.

The stochastical dynamics problem solution for the construction described by equation (2.3) is derived on the

basis of a nondamping structure mode shape series expansion

Y(t)=d> q(t) (2.10)

where q(t) is the generalized coordinate vector, the components of which are random variables, while

(D = [(1)I ,(I)2,...,<I>n] is the mode shape matrix, the column (Pk of which is the k-th standardized mode shape

obtained from the eigenvalue problem solution

(K—mibek =0 (2.11)

where wk is the k—th fundamental frequency.

Substituting equation (2.10) into equation (2.3) and multiplying it by (Dr and taking into account the

aforementioned assumptions, one can obtain the separated ordinary differential simultaneous equations relative

to the generalized coordinates

(fill) + [ß]w:+ß2)qk(1) + wiqkh) : ((1):.X(l)):xk(t) k=1,...,n (2.12)

where n denotes the number of the retained mode shapes.

To solve the statistical dynamics problem it is necessary for equation (2.12) to contain the external load Xk (t)

correlation functions (or PSDs) using the process X0) similar characteristics. Using the random functions

Xk (t) definition one can write the expressions for the vector X(t) correlation matrix and the PSD matrix

[<1k 1m (I) I ZCDIUCDM/ KX‚.\’/ (r)

1.]:1

(2.13)

5H t,” : EQLICDNUSXÄ X]

1.):1

where the (Dk, are elements of the vector CD). ‚



Using the spectral decomposition representation method (Bolotin, 1979), one can write the expression for the

mutual PSD matrix elements qk (t) for a stationary case.

quqm (w) = Hk (40)) Hm(ico)Skum ((0) (k,m = I,.‚.,n) (2.14)

where Hk (ice) denotes the frequency response matrix element. They are defined with respect to formulae

1

-—-———a_ 22k = Brwi +132 (2.15)
u); +2zekw—m

Hk (im) =

With equation (2.15) the expression for quqm (c0) is given by

Sxx w

k "'< ) (2.16)

quq’"(w)= (mi —2iekw—co2) (0)3" —2iemw—w2>

The correlation matrix may be defined with respect to the PSD obtained.

SXkXm (m)e’v“"dw

quqm(T) z —2iekco—m2) (u); — Ziemw—wz)
(2'17)

For civil engineering structures the situation is often such that the external loads field is broadband, the

damping is sufficiently small and the fundamental frequencies are dispersed. In this case the mutual correlation

between the generalized coordinates qk (t) may be neglected. The external loads X k(t) PSDs are assumed to

be constant in the limits of the admission band of the system described by equation (2.12). With these

assumptions

Sr (o,

s, (w)=——J(T"—)—— (2.18)
k a 7 2 2

(w;—(n“) +48,41)

2 ‚2km 8k .

qu (1:):qu6 cosBkI+B—sml3k]r|

k

(2.19)

2 TES‘k (Lok) 7 7

<5 Z ß = of ~2'
q 3 k It k

k 25km;

If aforementioned conditions are not fulfilled then the integral in equation (2.17) is computed numerically.

Equations (2.18) and (2.19) describe the probabilistic characteristics of the narrowband random process.

The FEM general relations are used to obtain the correlation functions and PSDs of the generalized nodal

displacements. So the nodal displacements Y(t) correlation matrix on the basis of equation (2.10) may be

presented by

K \ (T) : < Y(r)YT(r + r) > = < <Dq(t)qT(r + T)(I)T > = (I) < q(t)qT(r + I) > (DT = (DKq(I)<DT (2.20)

The stress correlation matrix is obtained similarly. The PSDs are obtained as the correlation matrices from a

Fourier transform.
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3 The Stochastical Dynamics Problem Solution for Structures with Random Parameters

The stochastical dynamics problem solution for the structures with random parameters is executed on the basis

of the aforementioned approach using the sensitivity theory (Haug et al., 1988). The structure parameters in the

expressions for mass, damping and stiffness matrices are random variables and so are the fundamental

frequencies and mode shapes as well. For civil engineering structures the S,» parameter dispersion is small,

therefore the structure fundamental frequencies depending on the S vector may be expanded into Taylor series

in the neighborhood of the mean value my having linear terms only.

wk(s) = mk(m,) + 2— (Si—m“) (k=l,...,n) (3.1)

The assumption that vector S is distributed in accordance with Gaussian Law or that m is great enough yields

the normalized PDF for (0k (S) . The mean values mmk and variances Cäk are defined as

 

mwk =wk(mly) 03k zzaw" 02. 7 (k :1„..,n) (3.2)

The mean value is defined by the eigenvalue problem solution (2.11) for the structure with deterministic

parameters S = m5 . T0 compute the variances oak the sensitivity theory is applied (Haug et al., 1988).

Therefore, to determine the derivatives 8 (0k /8 S,- in the expression (3.2) equation (2.11) must differentiated

with respect to parameters Si , and the adopted expression multiplied by the mode shape vector (bk .

[am—wwwth =S
5.

I 1

Taking account of the normalizing condition and reducing this equation respectively one can obtain the partial

derivative

amk : 1 a_K¢pk,¢k _fl 831gka (k=1,...,n) (i=1,...,m) (3.3)

as, Zwk 85‘. 7 as,

  

a.

The right hand side expression (3.3) is computed for S-
l

= ms . The obtained matrices of mass and stiffness

derivatives are created making use of their additivity property.

The solution obtained in the previous chapter is used to solve the stochastical dynamics problem for the

structure with random parameters as the random variables. But the fundamental frequencies (ok(k = 1,...,n) are

assumed to be deterministic hence the PSD and correlation function defined from equations (2.18) and (2.19) to

be conditional ones and they are denoted by qu (w / wk) and qu (r / wk

The generalized coordinates unconditional PSDs and correlation functions taking account of structure

parameters randomness are obtained as

quu) = Jqu‘.(r/wk) fun.) dwk (k=1,....n) (3.4)

0

55



and

54km : japan/an) f(o)k) dcok (3.5)

Ü

In the case the PDF f(m„) is Gaussian. equation (3.4) for the normalized correlation function and variance of

qk may be written

  

l Aekfl 8k r (wkwmwk)

Ruft) : ———— e costuk‘c+—sm(ok‘c exp — v*-—3— (100k

‘l 27: 603k 0 wk 260)

(3.6)

120:

26-5“: exp — W l cosmmkt+isinmmkt

2 (0A

2

S (m ) °° (o), —m
j rk wk 1 A (0k

ng = ————-—— 7 exp — ——,—— duo). (3.7)

- 1 — 7 — .zek 2n ka Owk „ka

The integral in equation (3.7) is computed numerically. The generalized coordinate PSD qu ((1)) is defined as

the correlation function inverse Fourier transform.

The generalized displacements probabilistic characteristics may be obtained on the adopted probabilistic

characteristics of the generalized coordinates q (I) vector using the method presented above.

4 Reliability Characteristics Definition Due to Fatigue Failures

As shown in chapter 2 for the chosen finite elements discretization of a structural element the generalized

nodal displacements (stress or strain) vector components ‚V, (i = 1.„.‚m) in accordance with equation (2.10)

may be introduced as a linear combination of the structure generalized coordinates q). (k = 1.....n) .

MI) =2b.t qm) (4.1)

k:l

For broadband random loads and small damping the generalized coordinates qk(r) vector components are

considered to he the narrowband quasiharmonic random processes having the PSDs (2.18) and correlation

functions (2.19) and may be presented (Bolotin. 1979) by

qkh) =Ak(t)sin[w)f+tp,‘(t)] (4.2)

where Ak (r) and (pk are the slowly changing amplitude and phase respectively in comparison with

anfing). while (it)A is the k—th fundamental frequency. Substituting equation (4.2) into equation (4.1) gives

\‘,(/) zäh“ ALU) sin[wkr+(pL(z)] :2)‘‚L(1) (4.3)

A:l

In equation (4.3) the narrowband processes ‚VIA introduced are the i—th components of the stress (strain)

vector y ( I ) corresponding to the k—th mode shape



rid!) 2271‘qu (t) zbik Akm Sin[mkt+(pk([)] (44)

Various approximate approaches for the complex SSS and deterministic regular loads allow to reduce the

complex SSS to a simple one on the basis of the classic strength hypotheses and tests results under a state of

plane stress generalization. As a rule in this case the stress (strain) tensor components are assumed to Change

synchronously and synphasely. The conditions mentioned are fulfilled for the narrowband processes yik(t)

introduced in accordance with equation (4.4). These processes have the same fundamental frequencies wk (t)

and phases (pk In this case an equivalent narrowband process yek (t) with amplitude M (t) and frequency

wk may be introduced corresponding to the linear SSS in a given structure point and this process is considered

to be a square root from some components of the quadratic form yik (t) .

yek (t) Z [qu yik (t) yrk
(4-5)

where Ci, are the factors assigned from the corresponding strength hypothesis. For example, the stress

intensities are yek (t) . Substituting equation (4.5) in expression (4.4) gives

1/2

yak (I) = zcir bik brk (1130):! :Ck QkÜ)

1/2

Ck = 2g, bik b‚k (k = l,...,n)

(4-6)

On adopted components yek(t) one can define some equivalent stress for a given structure point considering

all excited vibration mode shapes

n

ye (I) 2231(0) zick qk (I) :zck Ak (’) Sin[wkf+¢k (4'7)

k=l kzl

The broadband random process ye (t) is the narrowband random processes yek (t) superposition. Further on

basis of the random processes schematization method the process ye (t) reduces to the narrowband process

yM (t) as the equivalent one by a damage effect measure.

yM (I) 2 Mt) sin[(i)t + tp(t)] = A(r) cos(tur) + D(t) sin(0)t) (4-8)

The key factors of the processes ye (t) and yM (t) equivalence are:

- coincidence of the envelope Mt) PDF in equation (4.8) and amplitude ye (t) PDF defined in accordance

with one of the random processes schematization methods (Kogaev, 1977);

- coincidence of the narrowband process yM (1‘) frequency 0) and the process ye (1) zero crossing or peaks

mean values;

— coincidence of the processes ye (t) and M4 (I) correlation time.

The filter equation for the envelope Mr) is formed on the basis of the key factors mentioned. The envelope it

is obtained from

dk/dr = (131(k) + (D2(}t)n(r) (4.9)
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where n (t) is normal white noise with the correlation function K(‘C) = 0.5 N05 (I) (ö —c0rrelated process with

intensity NO ); Cl)I (7t) , (bzw are known deterministic functions satisfied to the Lipschitz condition.

For various engineering structures the failures due to low and high cycle fatigue is a typical feature. These

phenomena are described in the phenomenological model limits by means of kinetic equations for the fatigue

damage measure which varies from zero to one. An equation may be presented for the quasiharmonic loads

process

dz(t)/dt = cot) um“) (4.10)

where Mt) is the stress (strain) amplitude described by equation (4.8), while CO») and m(?») are the factors

and slopes of stress-life curve which are step functions of K0) .

Considering jointly equations (4.9) and (4.10) one can state on the basis of the Doob theorem that [2(1‘), Ä(t)]

is a two-dimensional Markov process, the one—dimensional PDF f(z, 7t, t) of which satisfies to the Fokker-

Planck-Kolmogorov (FPK) equation (Tichonov, 1977)

3—]: = „gam— gum-n £3121than <41”

with boundary conditions

limet, 1,!) = 0 (k, :)—> 0.x (4.12)

and initial condition

iimf(>t.z,z) = f(}t)f(:) z—>0 (4.13)

The FPK equation coefficients are formed by the damage equation and filter equation coefficients

A1 (1) = gawfifqazm (1an (wax

A3(Ä) = qmm“ (4.14)

Bot) = %<D3(>t)

where N0 is the white noise intensity in filter equation (4.9).

To solve equation (3.1 l) the function 80». (1),!) is introduced as a characteristic function with respect to z and

the PDF with respect to Ä .

Got. a). z) = if (A. :, gem-11; (4.15)

0

Accordingly equation (4.15) from the FPK equation taking account of boundary conditions (412) has partial

derivatives for the 80c 03. t) function with only two independent variables I and Ä

86 a ‚ l a2
.87 = —87[A,(t)e] + imz(x)e + EWWMQ] (4.16)
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In equation (4.16) the variable a) is a parameter. Considering 9(7». 0). t) as the PDF with respect to the

variable A20 one can expand the series by the orthogonal polynomials Qn()\.) with the weight function

f (7x.) as the known PDF of Mr) (Lewin, l989)

90», m, z) = f (HZ an ((0,1) Qnm (4.17)

n:0

Unknown complex factors 01„(u),t) entered in equation (4.17) are defined by substituting (4.17) in equation

(4.16) taking account of the polynomials Q" (7t) orthogonality condition. Further one can obtain the ordinary

simultaneous differential equations relative to the unknown factors (1,, (00,1) which are presented in the

complex form

801,, (1),: "
_ägJ = Zkzoak(w,t)unk („=1,...‚N) (4.18)

One can show that 0:0(00, t) is the characteristic function of z(t). The one-dimensional PDF of f (z, t) is

defined to be the a0(w, t) inverse Fourier-transform. Hence the structure main reliability characteristics are

defined, for example, by the probability of survival

P(t) = Jf(z.z)dz (4.19)

5 Numerical Investigations

On the basis of the approaches developed to solve the stochastical dynamics problem of beam structures with

random parameters presented in chapters 2 and 3 the influence of most typical components of the structural

parameters vector S(t) random dispersion on the probabilistic characteristics of the beam structure state vector

Y(t) is investigated. At first one considers a solution of the model test for a ring cross-section beam rigidly

closed on the left end with point mass on the right end and an elastic support in the middle. The external load

is a point force to be a centered normal stationary process as ,,truncated white noise“ (the PSD is constant in the

frequency range [0, 160] Hz). The random parameters — beam external diameter D, point mass value M, support

stiffness C-influence is investigated. Given parameters are assumed to be the normal random variables having

mean values and variances.

The material physical characteristics and beam parameters are:

- length l m;

— external diameter/internal diameter ratio 1.67

- modulus of elasticity (Young’s modulus) E = 1.96-105 MPa

— Poisson’s ratio v : 0.3

— material density p = 7.8 - 105 kg/m3

— white noise intensity so = 481.18 Nlm

This structure presented in Figure 1 consists of 10 finite elements. In given frequency range three vibration

mode shapes are excited in the external loads action plane (the ordinal numbers are 2—nd, 4—th, 6—th).
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Figure 1. Model Structure

Let us study the corresponding random parameter influence on the structure fundamental frequencies. The

mean values and root mean squares of the random parameters are respectively:

1) elastic support stiffness

mC = 198 kN / m

2) point mass on the right end

0519.8 kN/m

mc =9.8~10*2 kg 0N =9s-10‘3kg

3) 9-th finite element external diameter

mD=107 m 60:10—3m

4) 9-th finite element internal diameter

mdzs-io“3m 0(,:6~10_4m

The given parameters distribution law is considered to be normal and they are assumed to be independent. In

accordance with equation (3.3) the fundamental frequency derivatives with respect to the mentioned varying

parameters have been defined in the point relating to the parameter mean values. The derivatives are given in

Table l.

 

Fundamental

frequencies

derivatives

with

respect to the

varying

parameters

9a
ask

8002

85k

EM)3

85,k

Brod

35k

 

an;
as,

3036

ask

  

Support stiffness

c

328788515 9.42326E-03 |.24l49E»15 2.454l lE-Ol 9.26052E- l 2 875077E-Ol

 

Point mass

m

>94 l 352E+04 >2.76960E+05 ~2.32904E+05 ~5 .26345E+05 A3.45316E+05 —2.38994E+03

 

External

diameter

D

~7 O3035E+00 Al .01 577E+01 2.29855E+Ol 15|401E+02 lt3l715E+02 3.061 l3E+00

 

Internal

diameter

d

  

4.41961E+OO

 

9.43927E+00

 

8.22859E+OO

 

l.734l9E+02

 

1.2434SE+02 2.951 l6E+00

   

Table l. Fundamental Frequency Derivatives

As one can see, the point mass on the right end affects the fundamental frequencies most significantly, the

support in the middle affects on the fundamental frequencies most weakly. This is connected with the fact that

the vibration mode node is in the middle of the structure (especially for the list, 3—rd, S-th vibration modes)

and the greatest mode distance is at the structure’s right end, That is why the parameter M influence on the 2-

nd, 44h, 6—th vibration modes was studied in detail.
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The fundamental frequency variances have been computed (since only one parameter is being changed only one

term in equation (3.2) remains). Then the generalized coordinates correlation functions with respect to equation

(3.6) are defined. The expressions obtained are compared with the deterministic parameter correlation

functions. The normalized correlation functions for the 2—nd frequency are given in Figure 2 and the

corresponding PSDs are given in Figure 3. Here and further on the deterministic parameter curve is denoted by

number 1, the random parameter curve is denoted by number 2.
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Figure 3. The 2-nd Generalized Coordinate Normalized Power Spectral Density

For the 2-nd vibration mode when bending stress is dominant the stress variance values have been obtained

— 0'2 = 9.47103 (MF‘a)Z (deterministic mass case)

— 03 = 9‘71‘103(MPa)2 (random mass case)

It is necessary to notice the generalized coordinates variances non-sensitivity to any parameter dispersion. It

may be explained by the circumstance that the variance is a random process integral characteristic. The PSDs

and correlation functions differ most significantly.

The random vibration numerical investigations have been for a complex branching space tube structure of an

airplane control system element. The structure consists of 156 finite elements, the number of nodes is 153. The

nodes are enumerated to minimize the mass and stiffness matrices band width. The structure parameters are

— modulus of elasticity E = 7104 MPa

— Poisson’s ratio v 20.3

— material density p : 2.7 A 105 kg/ m“1

- external diameter/internal diameter ratio 1.13
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The tube structure is filled with a liquid having a density of p: 103 kg/m’i, and fastened with six elastic

supports to a base structure. The experimental investigations for the supports show that only vertical axial

stiffness and angle torsional stiffness components are needed to be taken into account, and the remaining

stiffness components are assumed to be infinite. The axial and angle stiffnesses are random variables, the mean

values of which are max = 933.45 kN / m and mu" 2 0.273 kN / m.

The structure random vibrations are excited through the elastic supports. Six supports are assumed to be

random vibrated in accordance with a given law being stationary normal. As calculations show the external

load spectrum includes the structure’s six fundamental frequencies. This structure plot and l-st and 2-nd

fundamental modes are shown in Figure 4.

153

145

59 139

38

 

Figure 4. Structure Plot and l-st and 2—nd Fundamental Modes

Fundamental frequency sensitivity to the structure random parameters changing analysis shows that the

parameter N7C7 axial vertical stiffness in the 59—th node affects the fundamental frequencies most

significally (Table 2). Therefore, the most detailed calculations have been carried out for these random

parameters. The first generalized coordinates’ normalized correlation functions and PSDs are shown in Figure

5 and Figure 6 respectively. Root-Mean—Square o7 z 196 kN/m.
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Relations of the various frequency sensitivities, PSD values On these frequencies, displacement absolute values

lead to the largest variances of the stress intensities to appear at the l-st fundamental frequency. The highest

frequencies have practically no effect on the stress variances.

                    

fFundamental frequency derivatives am, äwz 8003

with respect to the parameters s N ask ask ask

Axial stiffness into point 153 s] 4.81530E—O3 14553013703 2.56983

Angle torsional stiffness into point 153 s2 7.59090E—03 6.39397E—04 4.66385

Axial stiffness into point 145 53 1.34491E—03 1.38171E-03 5.68937

Angle torsional stiffness into point 145 s4 7.73184E-03 3.06824E—03 2.37573

Axial stiffness into point 139 55 2.35170E-05 6.99471E-04 1.36709

Angle torsional stiffness into point 139 s6 1.1 1013E—03 5.30892E—03 9.89055

Axial stiffness into point 59 s7 18907415702 1.93690E-02 1.16597

Angle torsional stiffness into point 59 53 2.13541E-03 1.04967E—03 1.95248

Axial stiffness into point 38 59 7.13677E—04 4.60507E—04 1.01971

Angle torsional stiffness into point 38 s“) 3.40855E—05 2.09092E—05 5.02191

Axial stiffness into point 3 s” 2.83265E—04 1.81709E-04 6.69719

Angle torsional stiffness into point 3 5,2 4.36764E—05 2.62375E-05 6.75474

   

Table 2. Fundamental Frequency Derivatives

          

w A A A A n 2\

j: n n n n “l /\ n w
„VVVVVVVVVV

Figure 5. The l-st Generalized Coordinate Normalized Correlation Function
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Figure 6. The l—st Generalized Coordinate Normalized Power Spectral Density

The reliability characteristics computing problem for the model test is solved with the following material

fatigue parameter data:

- endurance limit 0,] : 33 MPa;

— curve stress—life slopes are mI z 8 (105 < N < 107 cycles) and m2 = 2 (N S 105cycles).
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As the 2—nd mode shape stress exceeds stresses on remaining mode shapes significantly, only this mode shape

is taken into account to solve the reliability problem. The mean resource values (in cycles) have been obtained

for deterministic and stochastic problems respectively

—Td 218524

—T‚ 218058

In Figure 7 the damage measure PDFs are presented for three various times. In Figure 8 probability of survival

and failures PDF plots are shown. The results obtained allow to make the following conclusions:

— if only generalized coordinates variances are needed for computing it makes no sense to take into account

structure parameter randomness; in the PSD and correlation function needed for computing structure

parameters not accounting for randomness gives distorted results

— mean resource decreasing (3 percent) for random mass case test is defined by difference between stress

variance values

— survival time and failure PDF depend on the PSD and correlation functions of the structure SSS parameter

forms.

The reliability characteristics computing problem for the aforementioned structure is solved with the same

material fatigue parameter data. In Figure 9 the damage measure PDFs are presented for three different times.

In Figure 10 probability of survival and failure PDF plots are shown.
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Figure 7. Damage Measure Probability Density Functions
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Figure 8, Probability of Survival (P) and Failure Probability Density Function (q)
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Figure 9. Damage Measure Probability Density Functions
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Figure 10. Probability of Survival (P) and Failures Probability Density Function (q)
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