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Numerical Simulation of Stress Stimulated Bone Remodeling

U. Nackenhorst

The ability of living bones to adapt their structure to the stress conditions leads to a long timefailure ofcommon

hip joint stem endoprostheses. For the simulation ofstress adaptive bone remodeling a new stable and efficient

finite element procedure is suggested. Numerical studies based on a two-dimensional model of the femur show

the usefulness for a better understanding of bone remodeling Recommendations for improvements ofprosthesis

design are derivedfrom thesefirst studies.

l Introduction

The replacement of human skeleton joints by artificial substitutes is a well established procedure in orthopaedics

surgery. The hip joint endoprosthetics plays a major role with a part of approximately 70% of all artificial joint

replacements. The total amount of anual hip joint endoprosthetics is estimated to be 200.000 operations

throughout the world (Smolinski and Rubash. 1992).

The major problem of the commonly implanted stern endoprostheses is the limited life time which is

prognosticated, of about 10 to 15 years. After this time the fixation of the prosthesis stem in the femural bone

will be lost for a significant part of patients. And above everything, the life time ofa re-implantation is estimated

only half of its former endoprosthesis from which it follows that a third or fourth replacement does not make

much sense. Because both, cemented and non-cemented prostheses display this long time behavior the ability of

the living bone to adapt to the changed loading conditions is assumed to be the main reason for the failures.

The capability of the bone to adapt its

architecture onto the loading conditions has

led to an optimized light weight structure as

shown in Figure l. Makroscopically the

composition is devided into two major regions

of material disposition: the cortical bone of the

diaphysis and the spongious trabecular

oriented bone near the epiphysis. The

mechanical task of the trabecular system is to

provide a smooth load transfer from the joint

into the cortical tube. The cortical bone is a

rigid structure with high material density. The

spongious bone is built as a framework of

rods. the density and orientation of these rods

is strictly related to the mechanical demand as

shown by Pauwels (1965).
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Due to a hip joint replacement this wonderful

building is destroided by cutting of the

femural head and implanting a stiff artificial

structure. The result is a totally changed stress

distribution in the remaining bone which

induces bone remodeling surrounding the Figure 1. Structure ofaFemural Bone

prosthesis. But there are no genetic rules

present which provide a long time fixation of

the artificial part.

framework structure

of spongious bone

The capability of bones to adapt to changing loading conditions has been well known for more than one century.

Wolff (1892) stated his law of transformation. which might be summarized as follows: Changing working

conditions will lead to definite changes ofthe shape and the internal architecture ofbones.



A couple of theories have been developed to describe the stress adaptive growth of bones. A simple cubic

equation has been stated by Kummer (1972), which describes resorption and adsorption depending of the local

stress value. Later in the 80’s more detailed and complicated models have been published. Guzelsu and Saha

(1984) for example explained the remodeling based on the piezoelectric behavior of bones. Hart, Davy and

Heimple (1984) presented a cell-activity theory. Besides the mechanical stress there are included genetic,

metabolic and hormonal influences. These models are very complicated and include a lot of parameters which

have to be specified experimentally before numerical simulations can start.

At the beginning of the 90’s simplified theories based on stress only have been used for numerical bone

remodeling simulation. Carter and coworkers (Beaupre, Orr and Carter, 1990; Carter. Orr and Fyhrie,1989)

suggested a constitutive law p = f (0) which relates the material density to the mechanical stress. The stress

is calculated by the finite element method (FEM). By use ofa two—dimensional finite element model during an

iterative procudure the typical characteristics of a femur have been calculated. Weinans, Huiskes and coworkers

(Weinans et.al., 1991; van Rietbergen et.al., 1993; Weinans et.al., 1994) used a theory of evolution, e. g.

p = f (W), which relates the velocity of growth with the local strain energy density. The strain energy density

for characteristic loading conditions is computed by FEM. By the usage of two— and three—dimentional FE—

models the bone remodeling surrounding hip joint prostheses has been simulated. From the biological point of

view this theory of evolution seems to be more trust-worthy, but the finite element procedure used by these

authors is not very efficient and shows tendencies to lose stability as discussed in Weinans et.al. (1992) and

Jacobs et.a1. (1995). For a more detailed historical review of bone remodeling theories see Smolinski and

Rubash (1992).

Therefore, the theoretical part of this work is addressed to the development of a conditionable stable finite

element algorithm for the computation of the nonlinear bio-mechanical interaction probleme of stress adaptive

bone remodeling. The practicability of this algorithm will be demonstrated by numerical studies of bone

remodeling after hipjoint replacement by stem endoprostheses.

2 Theoretical Framework

Evolutional Theory of Bone Remodeling

Similar to the work of Weinans and Huiskes a simple equation of evolution

p: kii 4) (1)
ref

is used for stress adaptive bone remodeling. Herein p is the growing speed of the material density. From

equation (1) material is added when the strain energy density W is larger than a reference value W,“

(adsorption), otherwise the material density decreases (resorption). The parameter k is a time constant of

growth describing the physical time scale.

From experiments the relation

E z 50
<2)

between Young’s moduls E and material density p has been found (Carter and Hayes, 1977), the constants n,

EO and p0 have been measured as n = 3 and EO/pä : 3790 A 109 mg/kg2 s2.

From equation (2) there follows that the strain energy density is depending on the actual material density and the

mechanical strain 8 as well,

W(p,c) : 31«j—~c7iC(p)c (3)

where C is the matrix of linear elasticity. For the computational algorithm it is useful to divide W into a pure

density dependent and a strain dependent part. i. e.
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where Ü is the strain energy projected onto a particle of initial density.

In the following, a nondimensional density variable is introduced by sealing the material density.

x z L (5)

PO

Now the equation of evolution is written in a nondimensional form.

X:k[M4L—l) =kS (6)

ref

where k may vary between km z 0 and km“ corresponding to the material density of cortical bone. The

expression in parenthesis is abbreviated as S , called mechanical stimulus for bone remodeling, herein the

abbreviation Uref = 2 p0 Wref is used.

Time Discretization and Linearization

The integration of the equation (6) of evolution is performed numerically by a time step procedure. For a robust

and efficient algorithm an implicit Euler formula has been chosen.

A?» : k t+A’S Ar : HATSAI (7)

where

I+AIS : I+Atkn‘i I+AIU __1 (8)

Uref

The left superscript denotes the time, where the configuration at time t is known and the configuration at time

t+At has to be computed in the actual time step At. Because the coefficient k is not known, the non-

dimensional time t = kt has been introduced.

Taking the nonlinearities into account a consistent linearization has to be performed.

HA‘s z ‘S + DNS) - At + DECS) - Ae (9)

where D, (...) is the directional derivative with respect to the variable 2. This leads to the expression

I— T— IV
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M + TV“ — A5 (10)

Urcf Uref Uref

where T 6 : C0T 8 is the stress tensor at time I projected onto the initial material configuration.

Weak Formulation and Finite Element Approximation

Because it is not possible to derive an analytical solution of the coupled nonlinear bio-mechanical interaction of

bone remodeling for arbitrary geometries and boundary conditions it is approximated by use of the finite

element method. Foundation of modern finite element theory is a weak formulation, i. e. the formulation of the

problem in a variational sense. Therefore. equation (10) is multiplied by a weighting function 5}» and integrated

over the volume ofthe bone (B). which leads to

t—I'
1—-

in: As dm J 5t {pm—i) W": #jm Ath: J 5t ‘5 AI dV (11)
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In the same manner the equation of mechanical equilibrium has to be prepared, whose weak form is written as

fpö I+AIW dV % föuT T+AItdA : 0
(12)

(B) 6[(3)

Similar to equation (8) equation (12) has to be linearized with reSpect to the material density and the mechanical

strain. Additionally, it is scaled by the value Uref to get a well posed set of equations, which leads to

L ösT IMCOAedVJr J-ésTnTNH TEAldV

ref (3) ref (3)

l 

U; _[öuT HA‘tdA — #1657 W7“ TadV (13)
ref 81(8) ref(B)

Now equations (1 1) and (13) describe the bio-mechanical interaction in a variational formulation. For the

computation of an approximate solution a finite element discretization is performed by stating an approximation

of the displacement and the density field, i. e.

u(x,t) = H(x) 13(1)

A (l4)

Ä(x,'c) = G(x) Ä(1)

A standard procedure leads to the mixed finite element equation of equilibrium

KW Kuk A? 2 {9 :fi (15)
Kxu KM S

Equation (15) has to be solved within the time step algorithm as long as no incremental changes Aü and A}:

appear. Thus, the first row describes the mechanical equilibrium of external nodal forces fe and internal nodal

forces ff. The second row represents the biological equilibrium (X =0), i. e. no bone growth appears

anywhere in the structure.

Finite Element Description

For the bone remodeling simulations discussed below a simple hybrid plane stress element has been used. The

displacement field is approximated by bilinear shape functions whereas the density field is approximated by

constant shape functions. This enables one to eliminate the density variable ion element level. But

nevertheless, the mechanical stimulus (equation (6)) which reflects in the right hand side s from equation (15)

is computed based on a C0 -continuous distribution of the strain energy density. This is necessary to avoid a

checker board pattern in the calculated density distribution as discussed by Jacobs et.al. (1995).

A simple superconvergent projection has been used to compute this C0 -continuous strain energy density

distribution from the derivatives of the displacement field. By stating

W 2 HWW
(16)

where HW are the continuous shape functions (bilinear in this case) and W are the nodal values of the strain

energy density, within a weighted residual procedure

In; (wa — W)dV =0 (17)

(If)

the projection equation

In; HW dV w z JHfiWdV (18)

(B) (B)
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is obtained to compute the nodal values W of the C0-continuous strain energy density field W. It is

remarkable that the right hand side of equation (18) has to be computed with the superconvergent derivatives W,

i.e. W has to be computed at the so called superconvergent points in the interior of the elements. Otherwise the

projection will be inaccurate as shown by Nackenhorst (1995).

3 Bone Remodeling Simulation

Basis of the stress adaptive bone remodeling simulations discussed in this section is a two-dimensional finite

element model of the femur. This geometrical approximation is caused by the very poor knowledge about real

three-dimensional loading due to the muscles. Additionally, the material behaviour of the bone is assumed to be

isotropic and linearly elastic, because data for a more realistic material description are not available. For this

reasons it should be obvious, that the results obtained are not accurate in the sense that they will reflect the

realistic behaviour within limited error boundaries. But they will give us an idea of what happens with the bone

after endoprosthetics. And the study of parameter variations will allow statements for tendentious improvements.

The 2D Finite Element Model

The finite element meshes used for the simulations are shown in Figure 2. Left the discretization of the

physiological femur consisting of l 162 hybrid elements is plotted. In the right the model of the implanted femur

is shown, where the elements of the prosthesis are shaded. In the middle the so called side-plate (compare

Weinans et.al., 1994) is depicted. This side-plate is superimposed to the bones meshes to ensure a mechanical

behaviour close to reality. It does not take place on the bone remodeling process, the material properties are

from cortical bone.
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Figure 2. 2D-Finite Element Models for Bone Remodeling Simulation. Left: Physiological Model ofa Femural

Bone. Middle: Side-plate, Right: Model of an Implanted Femur.

The thickness of all elements is related to the corresponding three-dimensional cross section for both, the bone

and the sideplate. to provide a good representation of the 3d—stress state. The loading is approximated from

Pauwels one—leg—stand conditions where the resulting forces J and M are applied as distributed loads to the

model.
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The simulation starts with a homogeneous model of the physiological femur. The initial material properties are

described by [O :l to which an initial Young‘s modulus EU :ZGPa is related from equation (2). The

physical limits are given by 0.05 S Ä S 2. The upper limit describes cortical bone ( E(" :16 GPa ). The lower

limit is not set to zero for numerical reasons. but the related stiffness of Emm : 0.25 MPais negligible. The

Poission ratio has been chosen to be v : 0.29 which is not changed during the remodeling. The parameter Wref

has been obtained to WM : 8leT“Nm kg. All computations have been performed with a time increment of

At :002 which has led within ()0 to 200 time steps to a bio-mechanical equilibrium state in the sense of

equation (15).

Computation ofa Physiological Like Bone Architecture

Starting from a homogeneous density distribution A” :l a close to realistic architecture of the femur has been

computed within 60 incremental steps. Figure 3 shows the computed density distribution in comparison with a

radiograph ofa natural femur. A surprisingly good correlation is observed keeping in mind the simplified model.

During this simulation process the cortical walls of the diaphysis and the trabecular structure of the proximal

femur have been built up which is in good agreement with the natural bone. Clearly marked are the primary

trabecular system (compression) and the secondary arcuate trabecular system (tension). Also the regions of low

material density. especially the socalled Ward’s triangle. come out very realistically.
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Figure 3. Comparison ofthe Computed Material Density Distribution with a Radiograph.

Bone Remodeling after Artificial Hip Joint Replacement

To get a better understanding of bone remodeling after hip joint replacement studies with different stem

endoprostheses have been carried out. For these studies the geometry (length and width of the stem) and the

material properties have been varied. The thickness ofthe plane stem is 10 mm and constant along its length. An

overview of these variations is given in Table l, The different models are assigned by abbreviations such as ml

for a prosthesis of titanium with a narrow and long stem or ms for a prosthesis of steel with a width and short

SIGHT.



           

Material Titanium Steel

E=IIOGPa,v=0.29 E=2OOGPa,v=029

stem width ll - 28 mm 15 - 32 mm 15 - 32 mm

stem length 140 mm 95 mm 140 mm 95 mm 140 mm 95 mm

abbreviation tn] tns twl tws swl sws

 

These different endoprosthesis models have been “implanted“ into the density distribution presented in the

former section. The results of the remodeling simulation will be compared at a defined simulation time after 150

time steps.

The remodeling caused by the tnl — prosthesis is shown in Figure 4. Here the density distributions at time step 0

(postoperational) and at time step 150 (long time behaviour) are compared. Because of their small width the

narrow prostheses models do not fill out the diaphysis and therefore, the primal fixication is limited to the upper

third of their stem.

Table 1. Variations of Stem Endoprostheses Models

time step 0

(postoperational)

Figure 4. Bone Remodeling Caused by the tls-Prosthesis Model

It is remarkable that the bone very quickly shows tendencies to fix the end of the prosthesis stem. Additionally,

bone remodeling occurs in the proximal bone. A loss of material density is observed in the medial cortical wall

and the trabecular structure of the spongious bone has changed. These bone reactions are in good agreement

with clinical observations.
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Figure 5. Free-body Diagrams ofthe Prosthesis Showing the Interaction Forces

The changes of bone structure involve changes of load transfer between prosthesis and bone. An analysis of the

corresponding stress states has led to the simplified sketches in Figure 5 showing the mean interaction forces

between bone and prosthesis. Postoperational the forces are transmitted mainly at two points because the bone

facilitates support only by its existing structure. This geometrically very poor configuration leads to large

interaction forces. The bone’s reaction to this uncomfortable situation is very intelligent, it tries to fix the tip of

the prosthesis stem resulting into a more suitable geometry of the acting forces. Furthermore, the load transfer at

the medial side of the proximal third is smoothed. The remaining trabecular structure of the spongious bone now

mainly supports the muscle force acting at the trochanter major.

In Figure 6 the resulting density distributions after 150 time steps of four other prosthesis variants are compared.

From this comparison follows that obviously the width prosthesis types lead to a principally different

remodeling than the narrow ones independent of the material properties and the length of the stem. This is

caused by the different initial conditions, the width prosthesis are over their full length in contact with the bone

initially which provides a smooth load transfer‘ But what seems to be good in the beginning will be harmful

later. Because the bone is not suitably stressed due to this conditions (stress shielding) resorption or a loss of

material density occurs in the medial cortical wall. This resorption is the stronger the stiffer the prosthesis shaft

is built (compare twl and swl). Common to all prosthesis models studied here is the reaction of the bone at the

end of the stem. In this region the bone is stimulated to adsorption and to fix the tip of the prosthesis.

These first studies of stress adaptive bone remodeling around hip joint stern endoprostheses already allow some

recommendations for a more compatible prosthesis design. It seems not to be good to provide a fixation of the

stern over its whole length as is common practice with cemented prosthesis systems. This will lead to stress

shielding and results in a loss of cortical density. The studies have shown that the rigid contact only in the

proximal third as it is usually provided with uncemented prostheses systems will lead to much less resorption.

But here the initial geometry of the interaction forces leads to high local stresses. Thus, it seems to be

advantageous to fix the tip of the stem a priori to help the bone to adapt to the new situation.
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Figure 6. Comparison ofthe Long Time Configuration Resulting from Different Prostheses Models.

4 Conclusions

A new and efficient finite element procedure for the simulation of stress adaptive bone remodeling has been

presented. It is based on a simple theory of evolution which describes the bone growth depending on the local

stress state in a continuum sense. The coupling with the mechanical equilibrium equations lead to a consistent

formulation of the bio-mechanical interaction problem. A simple hybrid finite element approximation has been

chosen for the numerical simulation. Herein, the projection of superconvergent derivatives has been used to

avoid known instabilities.

Based on a two-dimensional finite element model of a femur numerical studies have been carried out to

understand the bone remodeling afier artificial hip joint replacement. The bone remodeling computed from

different models of stem endoprostheses has been compared. Already these early studies based on very simple

models lead to some recommendations for improved prosthesis designs and surgery techniques.

The expansion of the procedure to three-dimensional simulations including more realistic nonlinear material

descriptions and more detailed laws of evolution in addition is easily carried out. But the problem will be the

determination of the model parameters, especially the three-dimensional loading conditions due to the muscles.

Since those data are missing there will be only a limited progress by three-dimensional simulations aquired with

much more manual effort in discretizing and judging the results. But nevertheless, those studies will allow the

comparison of realistic prosthesis geometries even today, and the suggested simulation procedure will be an

efficient tool for this.
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