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Thermoparametric Vibrations of Noncircular Cylindrical Shell in

Nonstationary Temperature Field

G. I. Mikhasev, S. P. Kuntsevich

Low-frequency vibrations of an elastic noncircular cylindrical shell in a nonstationary temperature field is

investigated. By using the method of multiple scales, the solutions ofthe shell equations are constructed in the

form offunctions localized near “the weakest” generatrix. The equations for definition of the vibration ampli—

tude are derived. The main region of instability of the shell equilibrium is established.

1 Introduction

Various papers concerned with parametric vibrations of cylindrical shells have been published (Yao, 1963 and

1965; Wenzke, 1963; Vijayaraghavan and Evan-Iwanowski, 1967; Grundmann, 1970) and in many of them the

problem of dynamic instability of shells subjected to periodic axial or/and radial loads has been treated. How—

ever, taking into account the influence of the nonstationary temperature field can also lead to unstable forms of

motion (Ogibalov and Gribanov, 1968). In particular, by using Galerkin’s procedure, resonant thermoparamet—

ric vibrations of a circular cylindrical shell have been investigated by Kilichinskaya (1963).

The purpose of the present paper is to find the main region of instability of a noncircular cylindrical shell sub-

jected to action of periodic temperature and to analyze the influence of a variable curvature of a shell on the

dimensions of this region. The shell is supposed to have the “weakest” generatrix in a vicinity of which the

modes of low-frequency vibrations are localized. We will examine the case of parametric resonance (2* z 2(1)*‚

where 9* is the frequency of the temperature fluctuation on the external surface of the shell, (0* is one of the

fundamental frequencies of the lower spectrum of free vibrations.

2 Governing Equations

We consider a thin elastic noncircular cylindrical shell of constant thickness h and length L. We introduce an

orthogonal coordinate system x, y connected with the main curvatures lines, where x is a point coordinate on

the generatrix (O S x S L), and y is an arc length on the shell surface.

The distribution of variation of the temperature is assumed to be linear along the thickness and periodic in

time.

T=n+ne+flwuwe m

Here T2 is the temperature of the internal surface of the shell, T1 is the amplitude, t* is the time, and z is

the normal coordinate of a point.

According to theoretical and experimental data (Ogibalov and Gribanov, 1968), the coefficient of linear ther—

mal extension (x and Young’s modulus E are assumed to be linear functions of T.

a=%—aT E=&—ET (m

where 0(0 and E0 are the isothermal values of these parameters, and CL’ and E’ are determined experimentally.
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Suppose the shell edges are free, then initial temperature stresses in the shell are absent (Podstrigach and

Schvets, 1978), and for an analysis of the lowest part of the spectrum of thermoparametric bending vibrations,

the following governing equations can be used (Ogibalov and Gribanov, 1968):
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where W*, (13* are the normal deflection and the stress function, respectively, R1 = 00 and R2 (y) are the main

radii of a curvature, while p is the mass density.

For the free edges x = O, L, the boundary conditions have the form

 

_ 2 2 ‚k 2 *

MXEE1E32E2 8“: +8"; + 1 [MT—äNrjzo (4)

(l—v )E1 ax ay l—v Er
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Here MX, Qx and Nx, N“. are the bending moment, the shear force and the tangential forces in the median

surface of the shell. In the last term in equation (4)

h/2 h/2

MT = jaETzdz NT = jocEsz

—h/2 —h/2

are the moment and the tangential force, due to the thermal expansion of the shell.

We introduce dimensionless quantities as follows:

x=Rs (OSsSl=L/R)

Y=R(P 0’1/R=(P15‘PS(Pz=y2/R)

r*=r.t W*=CRW c1>*=Ca4E,hR2<I>

where R = R2 (0), 38 = h2 / [12 (1 —v2) R2] is a small parameter, v is Poisson’s ratio, = E0 — E’ T2 is the

static value of Young’s modulus, tc =11p R2/ (84 ES) is the characteristic time, and C is an arbitrary constant.

Let us consider the case when the amplitude of temperature fluctuations is not too large, so that

E’Tl

E

 

=2ne (6)

S
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where 1’] ~ 1 at 8—)0.

Introducing dimensionless quantities into equations (3) and taking into account relations (1), (2), (6), the gov-

erning equations can be rewritten in nondimensional form as follows

   

4 2 a2 82 W 4 2 2
er(t)AW— () + =0 sAdJ—x((p)r(t) =0 (7)

1 X (p 9s2 ar2 2 as2

Here

_ 1 2 2 2 3
1:1(t)—1—encos§2t— Es n cos Qt+0(€)

120‘) = 1 — e n cos Q t S) = (2* If x(q)) = R/R2(cp)

It is supposed here that x((p) is an infinity differentiable function so that

96(0) = 1 X’(0) = 0 X"(0) > 0 (8)

Then the generatrix (p = 0 is the “weakest” one, the modes of low—frequency free vibrations being localized in

its neighbourhood (Tovstik, 1983; Mikhasev, 1992). We will examine thermoparametric vibrations being ex-

cited by a nonstationary temperature field (1) near the line (p = 0.

To find an approximate solution corresponding to the main stress-strain state of the shell, the main boundary

conditions should be selected from conditions (4), (5). It is assumed here that OL'Tl/ocx ~ 8, 09sz ~ 1 at €—>0,

where (X, = oco + oc’ T is the stationary value of 0L. Then the last term in equation (4) may be disregarded, and

the main boundary conditions, with an accuracy up to values on the order of 82, appear as (Tovstik, 1995)

2 3

aa‘fzaag/=O fors=0,l (9)

s s

  

3 Asymptotic Solution

The method of multiple scales will be applied here. The uniformly valid solution of equations (7) is assumed to

be of the form

W= 2 8m Wk (S; 5,0, i1, m, a]; to, $1, m, tj) (10)

k=0

(D = z 8m q)k(5;§0,§1,m7§j; 1‘0, II, M» tj)

k=0

where

§j=e°‘”’2§ §=s‘”2<p t,=e/'t (11)

With equalities (8)and (1 l) in mind, the function x(q)) may be represented as follows
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m» = 1 + äex”(0)ä12+.„ (12)

The substitution of equations (10) to (12) into equation (7) produces a sequence of the boundary—value prob—

lems

k

ZDJWIH' =O k=0,l,2,,..

j=O

2 3

_aWk =._aWk :0 fors=0,l (14)
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3.1 Zeroth- and First-order Approximations

In the zeroth-order approximation (k = 0) we have homogeneous differential equations. Their solution may be

written in the form

W0," = [250’ (a, a) cos w" to + 2533 (at rpsinwnro] eil’névynm (16)
‚n

under the condition

kn

(Du = f(Pn) = ip:+—4 n=1,2,... (17)

pn

where j 2 1, i = V—l , and M and y„(s) are eigenvalues and eigenfunctions, respectively, of the boundary—

value problem

y“ — xy = 0 (18)

y"=y’”=0 for s=0,l

The minimization of the function f (pn) yields

w3=minf<m>=f<p2>=2flé p2=x5 (19>
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Here c0 = (1)2 + C(82) is the approximate value of the dimensionless fundamental frequency of free vibrations

of the circular cylindrical shell with radius R2 = R /x(0) = R.

Taking into account equation (19), D1 W0,” E O, and for k = 1 we obtain the homogeneous equation again.

The solution of this equation may be also found in form (16), where the functions Z581) ‚ 283 are substituted by

ZU) respectively.
S,” ’

3.2 Second-order Approximation

We will introduce a parameter G of detuning for the frequency of temperature fluctuation as follows

o=2w2+eo o~1 (20)

Taking into account equations (16), (19), (20), in the second—order approximation (k = 2), equation (13) has

the form

D0 W2: 462% [NC cos (mg to) +le sin (mg to) ] y„(s)— (21)

— 7.„ [cos (3 mg to + c t1)ZC(.91) + sin (3 032 to + (5102522 ] yn(s)

whcrc

  

922(0) 2 32(0)

NL. = —Ci —c1 a1 2583 + c2 [cos (on) 25.93—sin (0:02:93 ] — c3

as? ’ ’ ’ a“

32252: _ az§0>
M. = a? —cl g? 25ij— c2 [sm(6t1) 25.83 +cos (0:049; ] + c3?”

1 l

2% x”(())/16 c2 = 91% n/16 c3 = 2%
C1

The first term on the right side of equation (21) generates secular terms. The absence condition of these terms

gives the equations

N). = o M = 0 (22)

with respect to Z581) , ZS)" . The solution of the foregoing equations may be found in the form

233 =PC(§,, -, n, )e“%”"1)§12 2533 =P.\-(§1, ; t1, )e%”(")§'2 (23)

where

m . m '

P(-= Z Ac,j(§2,...;t1,..-)§{ P.-= Z ijüßw-‘ä’lwüf (24)
j=0 j=0

117



We substitute equations (23) and (24) into conditions (22) and equate coefficients at . For j = m + 2, m + 1

a system of algebraic equations is obtained as follows

(c1 — [22)146’};2 — 2‘7/21;A_\.„‚_2 : 0 (25)

L

2‘7/215A„‚._2 — (c, — 1:2)Aw;2 = o

which has a nontrivial solution if

xédx"an (zo
1/2

b = c, =

A
]
—

Coefficients at and 8171-1 yield two identical homogeneous systems of differential equations

Yj—Aj(tl)Y,-=0 j=m,m—l (27)

where

n=mwmnT

—a1 sin or] a1 cos (it, —a27‚-

A; ($1) = . '
aI cos 61‘] + a2",- a1 Sln th

a] = c2/c3 = 2% 7/; n a2‚.‚ = (1 + 2j)b/c3 = (1 + 213% ,/2X"(0) (28)

The mark “T” means a transposition.

The coefficients at $14 , 8111—3, . . . produce the nonhomogeneous system of differential equations

Yi—A,(t1)Y,=(1+j)(2+j)cglEYHg j=m—2,m—3,...‚0 (29)

Here E is a matrix with the elements e11 = 622 = O, el2 = 1, ezl = —1

Examining equation (13) for k 2 3, one can analogously construct the functions WM, WM, . . .
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4 Regions of Stability and Instability

Thus, relations (6) and (20) being valid, the shell normal deflection is defined by the approximate formula

W2m= CR { 2 [A„‚_‚-(ez)cos(w2 t)+ Aw (e t) 51mg t)] (s"’2cp)j><

j=0

x exp [ a“ (i p„ (p — 058“” b <92) 1 y" (s) + 0(8‘”) } (30)

It should be noted that b > O. Therefore, excited vibrations are concentrated in a small neighbourhood of the

generatrix (p = 0.

If the temperature T is constant (1] = 0), then systems (27) and (29) can be integrated in Closed form. In this

case, function (30) are the modes of free Vibrations (Tovstik, 1983) with the fundamental frequency

SEW „wg; 443(82)] j=o‚ 1,(0*: ’

pR2
".1

(1)
where 00”] =a2‘j , and an and (02 are calculated by formulas (19) and (28).

 

Figure 1. The Main Region of Instability

In the case of pulsating temperature (T1 at 0), formula (30) defines the unstable or stable vibrations. In Figure 1

the shadowed area is the main unstable region, i.e., points (CF/a1, azljlal) in this region yield unstable solutions

for equations (27) and (29): |Yj|——>oo for t—><>o. Otherwise, in the region outside the shadowed area, solutions

of equations (27) and (29) are bounded. If the shell is circular (az‘, = 0), vibrations are unstable for

—2 S G/a1 S 2, however, a variable curvature displaces the interval of instability. It should be noted, that for a

noncircular cylindrical shell, two the nearest modes Wim and me+1 may be stable (or bounded) and unstable,

simultaneously.
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