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The Effect of the Resistance of Lines of Electric Transmission on

the Stability of the System

“Synchronous Generator - Synchronous Motor”

F. F. Rodyukov, G. Soderbacka

A formula for the calculation of the critical resistance of the lines of electric transmission between a syn-

chronous generator and a synchronous motor is obtained. Above the critical resistance the system loses

its stability. In real electric transmissions the resistance found by the formula is increased proportionally

to the large coefificient for voltage transform. Therefore there is essentially less concern for the problem

of the length of the lines of electric transmission. But if the resistance is counted as R—load, then the

practical importance of the paper becomes obvious.

1 Introduction

In a paper by Rodyukov (1993) when splitting the correct equations for synchronous motors it is shown

that in the equation for the moments there appears a destabilization term. This term is decisive in the

study of the stability of synchronous motors without damping circuits and cannot be neglected. In the

same paper it is concluded that for synchronous motors with damping circuits this term can be neglected.

The results of our paper on the resistance of the line of electric transmission (or simply R—load) on the

stability of the system one synchronous generator (SG) — one synchronous motor (SM), forces us to state

that the destabilization term can be neglected in the correct split equations for synchronous machines

only if the R-load is neglibly small. But in this case it is necessary to compare the real R—load with the

critical value given by the formula which is the aim of this paper.

2 Synchronous Generator and Synchronous Motor

The equations coupling a system of SC and SM with commensurable power are taken from the paper

by Eirola et al. (1996). The resistance 5, of the line of electric transmission we include as a drop in the

voltage on that line in the first two equations for the SM.

W1 = 1Pqi — Otswdi — Ud

wa = —1/1d1 - Olswa — “q

midi Z "than + Erfiwdi — ich — Ufi)

. . (1)

miql = Thai +5rf1W1q1 — Z'ql)

91 : 51

$1 = —51[—l€€s(bi + Hills — Wdiiqi — wq1id1) — Mr]
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W2 = $112 — as¢d2 — Elid2 + Ud

1/52 = "wan - 055%2 - Eziq2 + Uq

#21112 = 7/.)d2 — 80/1112 — H2iq2) + Erf2(’d1d2 - idg — ufg cos 9)

Winn : ¢q2 + swam — H2id2) + 8rf2Wq2 — iqg + Ufg sin9)

92 : 52

$2 = 52035093 + u%2)s — (1/)d2iq2 — mm) - Mm)

where s : 51 — 32, 6 = 02 — 61, k = le/Ls-Z. The power coefficient is included in the equation of the

relations between the currents im, idg and 2'41, iqg by the first law of Kirchhoff, if the currents are in

nondimensional form.

idl : [$1.112 2.ql : kiqZ

To simplify cumbersome calculations we set m : pg = ‚u, Erfl = (5ng = ewe, Uf] = Ufg = uf‚ b1 =

b2 2 b, (b = (1 — p)/‚u). Moreover we will neglect terms with coefficients as (ozs ~ 10“2 << 1). These

simplifications do not affect the final conclusions but the calculations are considerably reduced.

We use the equations (3) to find the unknown voltages ud and uq.

(1 + km = 1/)q1 +€rf(¢d1 "UN — kl¢q2 —€lid2 — 3(t/1q2 —Hiq2) +Erf(¢d2 -uf COS 9)]

(4)

(1+ km; = —¢d1 +€rf¢q1 —k[—¢d2 -€ziq2 +5(1/1d2 -Mid2) +Erf(1/}q2 +uf Sin 9)]

We substitute the expression for ud and uq into the system (1) and (2) and eliminate the equations for

the currents for SG. Passing to the mechanical variables s and 9 the order is again decreased by two.

Before we write the final form for the system (1) and (2) we find the expressions for MT and Mm from

the steady—state regime (31 : 0, 32 = 07 c9 = 00).

MT : kuflslfl + c0560) — (1 + k) sin 60]/[(1 + k)2 + (5)

Mm = —u§[el(1 + c0360) + (1 + k) Sin Bel/[(1 + k)? + 512] (6)

From equations (5) and (6) we find the relation between MT and Mm.

MT z ka + magma + cos00)/[(1 + mg + 5%] (7)

Because we are interested only in the static stability of the systems (1) and (2) we use equation (7) when

we form the equation for the derivative of s.
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Then the final form of the systems (1) and (2) will be

¢d2 = 1.1Tka +¢q2 +€rf(¢d1 -Uf) — k[—s(¢q2 —‚uiqg) +5rf(wd2 —uf cos 9)]}

"(im = Them/>611 +1/1d2)+5rf7‚bq1 —k[s(wd2 qmm+srqu2 +uf sin 6)]}

den = —¢d2 + 1/1q1 + 1’Mq2 — 61id2

71qu = “Tim " (W1 + 1,1412) — €liq2

Md2 = m2 — 8(qu — M7542) + 5rf("/)d2 — idz — Uf cos 0) (8)

“((12 : ¢q2 + SW12 — mm) + 5rf(¢q2 — ti + Uf sin 9)

Ö : 3

s" = 6550»? + u%)s — [ö2(wd2iq2 — wqu'dg) — kéiwdiz’qg — with] + W,”

+2k61u?„51(1 + cos (9)/[(1 + k)2 + 5,2]

where Ö = 62 + köl.

3 Static Stability

To study the static stability of the equilibrium we proceed as in Eirola et al. (1996), that is, we set

the derivatives of the electric variables equal to zero, solve these equations with respect to mechanical

variables 6 and s and substitute these solutions into the mechanical subsystem of the system (8).

To simplify the calculations we use the relations between the fluxes wen, wqg, wdl and 1/)„11 and the currents

idg, iqg. From the third and fourth of equations (8) we get expressions for rbdl and 1/141. Using these in

the first and second equations we get expression in currents for 2/1d2 and wqg.

wd2:[(52 +p52)id2+5,„fs(1—p)iq2+6rfuf(5„f cos9—ssin9)]/(5g +52)
f f

m2:[<—e„«s<1—u)id2+<aäf+us2>iq2—e„cuf(scose—srfsin9>]/<eäf+s2>

 

(9)

1/)d1 = —1‚11d2 — €1iq2

wq1 = “win + 511'112

The currents idg and iqg can then be solved from the fifth and sixth equation.

. _ _ 53f(1+k)+82(k+[.t)+5rf{[5rf(1+k)+515l cos 6—[s(k+u)—615rf]sin 0}

Zd2 _ ”f 53f[(1+k)2+E?]+s2[(k+n)2+s%]+2515rfs(l—n)

(10)
—erf3(1—n)—51(53f+52)+5rf{[s(k+,u)—Ezarf] cos 9+[5‚f(1+k)+5‚s] sin 6}

53f[(1+k)2+5%]+82[(k+u)2+€%]+2515rfs(1—n)

 

1112 Z “f

Substituting equations (9) and (10) into the last one of equations (8) we get the following equations for
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analyzing the stability of the electroenergetic system:

6': s

s" : 653(b2 + u})s

 

_ 2 (Serf [s(1—;r)—s(lc+u) COS 0—5” (1+k) sin 0}—(62—k61)515rf[5rf(1+cos 6)As sin 9M616182

“f Ei;[(1+k)2+6?]+82[(k+u)2+6?1+25z5rf3(1-u)

2 5l(1 + cos 6)
+(SMm + 2k61uf(1+ k)2 + El?

1n the steady—state regime (s : O and 0 : 00) the system (11) gives the following equation for determining

the equilibrium of the original system (8):

_ 2 (1 +k)sin60 +el(1 +c0800)

 

Mm I “f (1+ m2 + a"; (12)

We write equation (12) in the form

Mm + “3‘ (1 + If); + a? Z ”3" 0k): ’35; (13)

where

sin/t : 51/ (1 + k)2 + 6,2 (14)

The first necessary condition for stability follows from equation (13).

sin(00 + KZ) S 0 (15)

Two main equilibria correspond to the condition (15) for 7r S 60 + K, g 27r. To determine the stable one

the system (11) is linearized in the neighbourhood of the equilibrium (s : 0,9 : 60) and the stability

conditions supplementary to equation (14) on coefficients of the second order characteristic equation are

analyzed.

System (11) linearized around the equilibrium becomes

  

ä : 5

E: 653(b2 + 11305

(16)
_ 2 [(1%)2—1-512]{ö[1—u—(k»p)cos 00]+(62—k§1)51 sin 90}|—25‚(1—p)[6(1+k)sin 9cer2—k61)el(1+cos 00)] ~

“f 5Tf[(1+k)2+512}2 5

2 6(1+k)cos0 -«(6 —k61)s‚ sin0 "

+“f (M2157,' 06

The characteristic equation of equations (16) can be written

A2 + a1)\ + a2 = 0

The free term a2 has the following form:

62 1+k2+ 2 ö —k6 2
a2 Z _uäc ( ) El( 2 1) COS(60 + H1)

(1 +k)2 +sl2
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where

   

Sin ”1 2 52(1 +82%; — k61)2 (18)

From equation (17) using the necessary stability condition a; > 0 it follows that

cos(60 + m1) < 0 (19)

The coefficient a1 we represent in the form

(11 = —6‚€s(b2 + u?) — u} cos(60 + Kg)

X x/{6(k+u)[(1+k)2+€?l~25?(1—u)(<:2j<:113::i6525:61)[(1%)2+€?H2(1—#)5(1+k)}25? (20)

„im _ t>———————16<1;;;gj:;§§3jg]§61

where

sin n2 z 51{(624661>[<1+k)2+e?1+2<1—u>ö(1+k>}
(21)

 

x/{ÖUHM[(l+k)24€?]"26?(1w)(524651)}21‘1024651)[(1%)2+6?H2(1-#)5(1+k)}26?

The value of 5, increases with the length of the line of electric transmission, but the third term in equation

(20) giving the main contribution to the stability of the system, decreases, becoming for some value of

5) equal to the destabilization term (20). Obviously, this value of e; is large enough. Assuming therefore

that a? >> 1 we follow the role of the second term in (20) in the process considered.

For values 5,2 >> 1 it follows from equations (14), (18) and (21) that

sin/t2 —> sin/<21 —> sin/t —> 1

but

192 —> K1 —> n —> 7r/2

But according to equation (19) the term (205(90 + K) must be negative. This means that the second term

in equation (20) helps the third term to maintain stability. The critical situation arises when cos(00 + H)

approaches its maximal critical value, that is, zero. From this it is clear that the critical value of a; can

be found from cos(l90 + KL) 2 a1 = 0. Under the condition 5% >> 1 this leads us to the following formula

for calculation of (5,)“:

(1 — M)(352 — 1451)

555Tf(b2 + u})(62 + köl) (22)
(El)cr = Uf

If the power of the SM is much less than the power of the SG then k < 1. Thus when the SM works

from a grid of infinite power (k = 0) we get from equation (22)

3(1 — M)
er : ———_“—"

(8‘) |k=0 “f essrflb? + u?) ( )

When the powers of SG and SM are comparable (k ~ 1), 5) tends to the value

1 - M

(anmmflg = uf ——_ (24>
ESETf(b2 + u?)
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Thus accounting for the parameters of the SG in the electroenergetic system decreases the critical value

for the resistance 61 up to x/3 times.

The order of the parameters in modern synchronous machines are

es N 10“3 Erf N 10‘3

Because Uf z 1 and l)2 z (1 — [1)2/n2 ~ 10 we get the order

(51)” ~ 103

For the value of (22)“. it is possible to find the corresponding maximal length of the line of electric

transmission. But as was remarked at the beginning of the paper there is no transform of electroenergy

when it is transmitted long distances and the formula (23) has no practical actuality. But if in series

with an SM there is included an R—load then its effect on the stability of the SM must be taken into

account either according to formula (23) (for autonomous energosystems) or according to formula (24).

Remark. (51)” corresponds to the case Mm = 0 in the work of the SM. This is obvious from equa-

tion (13) because when 5; —) oo then Mm —+ 0. The SM can work only for a; < (51)”.
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