
TECHNISCHE MECHANIK, Band l7, Heft} (1%?)‚223‘229

Munuskripicingang: 9,1uni 1997

A Frequency—Domain Criterion for Global Stability of Systems

with Angular Coordinates

G.A. Leonov, V.B. Smirnova, L. Sperling

An integmudijferential Volterm equation with a periodic nonlinear function which has a zero mean value

over a period is considered and the asymptotic behaviour of its solution is investigated. With this aim a

frequency—domain stability condition is proved. Finalli , this condition is applied to a special pendulum—like

system.

1 Introduction

In this paper we consider an integro—differential Volterra equation with a periodic nonlinear function.

Equations of this type describe the dynamics of certain mechanical and other engineering systems. They

describe for example the dynamics of phase-locked loops (Lindsey, 1972; Vitterbi, 1966) and the helical

movements of the tip of growing plants (Israelsson and Johnsson, 1967; Somolinos, 1978). They can also

be used for the description of the motion of a mathematical pendulum and the dynamics of synchronous

machines (Adkins, 1962; Yanko—Trinitskij, 1958). The most important problem connected with these

equations is the problem of asymptotic behaviour of its solutions as the argument time tends to infinity.

The desired mode for the mechanical system corresponds as a rule to the situation when every solution

of the Volterra equation tends to a certain constant. We shall regard this case as a stable one in the sense

of gradient—like behaviour (Leonov and Smirnova, 1996). A number of theorems with sufficient conditions

of stability and instability of integro—diiferential Volterra equations with periodic nonlinear functions is

contained in the books (Leonov et 31., 1992; Leonov et al., 1996). All the theorems are formulated in

terms of transfer functions of the linear part of the system, in the form of frequency—domain inequalities.

This paper deals with a particular case of such an equation, namely with the case when the nonlinear

function has a zero mean value over one period. The aim of the paper is to simplify frequency—domain

conditions of stability in this case. We are also going to show how a frequency-domain criterion can be

applied to a concrete mechanical system.

2 Frequency-Domain Criterion for Global Stability

We consider the integro—differential equation

t

are) = out) — fw —- r) we» dr (1)

o

A

where (p : R —) R is a Lipschitz continuous, A-periodic function with / 90(0) do = 0, 00 : R+ —+ R is

0

continuous and bounded, '7 : R+ ~+ R is L1[0, +00). Under these requirements for 00, 7, (p equation (1)

has a. unique solution on [0, +00) for any initial data

0(0) = o0 (2)

Let us introduce a transfer function

Koo) = /W) e‘P‘dt (p = T + zu, i2 = m1)

0
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Let us also make additional assumptions on 00 and 1/.

p1) 00(t) —) 0 as t —> 00 and there is a number n > 0 such that t H 00(t)e’1‘ is L2(O‚ +00)

p2) there is a number r2 > 0 such that the function t H 7(t)er2t is L2(0‚ +00)

p3) 4p is C1 and has a finite number of zeros on [0, A) and [<p’(o)]2 + [90(0)]2 75 0

Theorem. Suppose there exist numbers 5 > O, n 2 0, m g inf <p’(o), ug 2 sup cp’(a) with in < 0

HEIOYA) oE[0,A)

and #2 > 0 such that for all w E R the following inequality is fulfilled:

Re{K(iw) — Email) + ,ul—liw]*[K(iw) + „gliwn _ 51mm)? 2 o (3)

Then the following relations take place

flflehm+m) (Q

(7(t) —> 0 as t —> +00 (5)

If in addition K(0) gfi 0 then

o(t) —> q as t —-> +00, where (‚0(q) = O (6)

Proof. Let 0(t) be an arbitrary solution of equation (1). Let us define the following functions

MHZWMW

0, t < 0

Mt) 2: t, t6 [0,1]

Lt>1

t

no) :2 u(t)17(t) (to) := — / w — we) dr

0

am z: am) — fw — no — „(Mm dr

Note that

5705) = 5(t) + („(75)

Furthermore for an arbitrary T > 1 we introduce the functions

._ mm‚tST

UT“) '— { 17(T)e“°(T—t) (c > 0), t > T

0, t 5 0

CT“) 1- t

— 7(t — T)nT(T) d7", t > 0

1
It is clear that nT, 77T, (T are L1(0, +00) n L2(0, +00). So we can construct a functional

T

AT 3: /{CTTIT + 54% + ”KT — Mflfirl [CT — #2—1Üi‘1}dt

o
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The functions 17T, fiT, (T have the Fourier transforms 17T(iw)‚ Thaw), ETUw) respectively which satisfy

the relations N ~

cam) = —K(z'w)r7T<iw) and wow) = iwmw) (7)

By the Parseval equality we get

+00

AT = 51; / { — ReK(z'w) + 5mm)? + nRe[K(iw) + ufliwr — [K(iw)) + „2—1in IfiT(iw)|2dw

—OO

It follows from equation (3) that

AT S 0 for any T > 1 (8)

Note that

[705) = ä(t) + CT(t) for t E [0,T] (9)

Let us split the integral AT in the following way:

5

AT = Z AT]:

k:1

where

+00

An z: f {CTnT + refit/JIM? - null—1 + M§1)CT7'7T} dt

T

+00

An := f (e + ‚04% dt

T

T

AT3 z: / {änu + (5 + ‚0(5)? — 255c“; + 5(„1'1 + p;1)fi„ä} dt

0

1

An == {(ß - Dim + “#1—1/‘2—1073 - 172) - not? +16% (1‘7 - 1’7„)} dt

0
\

T

ATE, == / {du + €62 + war — uflfixä — u;1ü)}dt

0

It is clear that [Ag-1| and [An] are bounded by constants which do not depend on T and that Am > 0.

Taking into consideration that ä(t)e’°t E L2 [0, +00) where m = min{r1‚ T2} we get that |AT3| is bounded

by a constant which does not depend on T. So it follows from inequalities (8) that

ATS < 00 (10)

where co does not depend on T.

Since p1 g %‘g g 112 we have

and consequently,

T

f {d(t)<p(a(t)) + 5620)} dt < c1 (11)

o

where c1 does not depend on T.
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Since the integral

T 0(T)

/«Iowa» dt = / «0(a) da

0 0(0)

A

and / 90(0) do = 0 we can aflirm that this integral is also bounded by a constant independent of T. Then

0

it follows from inequality (11) that the inclusion (4) is true.

Let us now demonstrate that the relation (5) is also true. For this purpose we shall show at first that

0(t) is uniformly continuous on [0, +00). For 00(t) this property follows from p1). So let us consider the

function

at) == fat-enema [mt—mde

0 0

We have

t+At t

/ n(t+At—T)7(T)dT + / In(t+At—T)-n(t—T)I Ivmldr

O

|C(t+ At) — C(t)| s

 

 

The function 17(t) is bounded and uniformly continuous on [0, +00). Hence and from property p2) it

follows that g(t) is uniformly continuous on [0, +00).

According the Barbalat lemma (Popov, 1973) if a uniformly continuous function f (t) on [0, +00) is

L2(0, +00) then it tends to 0 as t —) +00. So relation (4) implies relation

Let us demonstrate now that relation (4) implies relation (6). We have from equation (1)

at) — one) = — ft m — 017de = — ft 70 70) dA) mmd7
0 if] t—‘r

00 00 00

= —n<t) f 70) dx + 17(0) / w) dx + / (mt) / 7W zu} dr
0 t 0 t—T

The left side of equation (12) tends to 0 as t —) +00. Further, it follows from relation (4) that 17 6

+00

L2[0, +00) and it follows from p2) that / 7(‚\) d/\ E L2[0, +00).

t

It is well known (Gelig, 1966) that a convolution of two functions which belong to L2[0, +00) tends to 0

as its argument goes to infinity. So

t +00

[(77011 7(‚\)d‚\}dt—>0 as t—++00

+00

It follows also from p2) that / 7(x\)dz\ —) 0 as t —) +00. Then since / 7(A) d/\ 7€ O we deduce from

0t

equation (12) that

go(a(t)) —> 0 as t —> +00 (13)

Let now m0 be the least distance between the zeros of go on [0, A) and let 6 E (0, We introduce the

set

M ;: {(7)0 ¢Uk(ak — 6,0]: +6), 90071€) = 0}

and the number

m := |<p(a)|
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Suppose 6 < m. Then the inequality |<p(a)l < E implies that 0 belongs to the 6—neighborhood of a certain

zero of the function (p. Let us denote it by q. It follows from equation (13) that there exists a number

T > 0 such that for t > T all values of 0(t) belong to the 6-neighborhood of q. Since we can choose 6 as

small as desired it follows that relation (6) is true. The theorem is proved.

3 Example

Let us consider now the problem of self—synchronization of two rotors on a vibrator with one degree of

freedom. The equations describing the change of the slowly variable components a1, a2 of the phases of

the rotor motion are (Sperling et al., 1997)

[1&1 + kldl + Asin(a1 — a2) : 0

I2Ö2 + kzdg —— Asin(a1 —- a2) : 0 (14)

with

A r 1f f A A — _._.1_212 :cz xz—M(w2—Q2)

where Ii, ki, f,- = 1,2) are the moments of inertia, the coefficients of viscosity, and the centrifugal

forces of the rotors respectively, A" is the harmonic influence coefficient, M and w are the mass and the

natural frequency of the vibrator, and Q is the synchronous angular velocity.

Our aim is to investigate the domain of attraction for the equilibria set of (14), which corresponds to all

existing Lyapunov stable as well as Lyapunov unstable self—synchronized motions. Note that the equilibria

set of (14) is as follows:

{(a1 ewaz sq) : 011 eq = const, a2 eq = const, a1 eq — a2 eq = 7m}

Let us exchange each of equations (14) by the equivalent integro—differential equation

t

/e_;; (H) Sm (mm _ mm) (1T (l = 1,2) (15)

0

k __ l

me) = dz(0)e_7f t + —(A

Let us introduce the function a = a1 — a2. It follows from equation (15) that 0(t) satisfies

t

ä(t) : (c‘z1(0)e_%L t —— d2(0)e—l7e% t) — A/ (file—i (t—T) + ie—ä (t—T)) sin (0(T)) d7 (16)

0

In order to investigate the asymptotics ofa solution of equation (16) we apply the theorem of the preceding

section. Note that all the requirements for the functions 00 (t), 7(t) and 90(0) are fulfilled. So we must

only verify that inequality (3) is true. We suppose that A > 0. In case A < 0 it is sufficient to replace in

equation (16) A by [Al and sin (0(7)) by ( — sin (a(T))), and all the conclusions of the section remain

true.

  

In our case 1 1

K = A ————- +——

(p) (11174-761 I2P+k2>

Consequently

. . 2 k1(kä + 122012) + 1420;; + 1,209) — eA[(k1 + k2)? + ([1 + may]
K — K = A

Re (W) 5' (W) I (1912+ Ifw2)(kg + 122(02)

It is evident that if H = 0 and if for all w

l 11:10:; + 13w?) + 1:209? + I12w2)

A (k1 + k2)2 + ([1 + I2)2w2

the frequency—domain inequality (3) is fulfilled. Consequently

(7(t) —> 0 as t —> +00 (17)
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sin (a((t)) —) 0 as t —> +00 (18)

0(t) ——> 7mo as t —) +00 (19)

where no is a certain integer.

Let us now replace the integro—differential equation (16) by the equivalent integral equation

t

“Ü=Um%+/
{mmk‘%9—

®mk-%a

O

(20)

0 1 k 1 k

—A/ — e—fi (B‘T) + — emfi (gar) sinU(T) (17‘ d6?

I1 [2

o

We can write equation (20) also in the following form

t t

A . 1 „L1 „T 1 _k_ _T

0(75) = (7(t) — A/ { San'(T)/ (Te 1109 )+ [_e I: (0 )> d6}dT (21)

1 2

0 T

with

+ I10!1(Ü) _ I2a2(0) + [202(0) e_';_21t _ e_%t

k1 kg ’62 [‘71

Finally let us rewrite equation (21) as

an=am)

 

t t

1 _ _ _ n .

U(t):a(t)_A “1+; /SiHU(TldT+A/ ‘—6 TIL” T)+ie £1“ T) sina("r)d7' (22)

[(71 [62
k1 k2

.0 o

It is known (Leonov et al., 1996) that the convolution of a function from L1[0, +00) and a function which

tends to 0 as its argument tends to infinity also tends to 0 as its argument tends to infinity. That is why

the last term of the right side of equation (22) tends to 0 as t —> +00. Then since 3(t) and 0(t) have

finite limits as t —> +00 it follows from equation (22) that

t

tlignoo / sina(7') d'r = const (23)

0

Let us revert to equation (15). It follows from equation (23) that

  

d,(t) —> 0 as t—> +00 (l = 1,2) (24)

On the other hand we have from equation (15) that

I _k

amt) = mm) mien; (1 — e fit)
z

1 [A t 1 [A t (25)
_ _ k

+( ) /sina(T)dT — ( ) /sin (0(7)) e_#(t—T)d7

kl kl

o o

It follows from equations (23), (18) and (25) that

a,(t) —> const as t —> +00 (l = 1,2) (26)

The limit relations (26) and (19) mean that every solution of system (14) tends to a certain equilibrium

as t —) +00. So the domain of attraction for the equilibria set (14) is the space R2. However, not every

equilibrium is Lyapunov stable. The synchronized motion corresponding to the phase differences 7m is

stable in this sense, if A” is positive and n is an even number as well as if A11 is negative and n is an

odd number. Otherwise the motion is Lyapunov unstable (Sperling et al., 1997).
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