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Free and Parametric Vibrations of Cylindrical Shells under

Static and Periodic Axial Loads

G. I. Mikhasev

This study examines free and parametric vibrations of cylindrical shells subjected to axial loads. In the case of

free vibrations, the loading is static. Parametric vibrations are excited by a combined load consisting of one

static and two periodic load components. The load is assumed to be nonuniform in the circumferential direc-

tion and the shell is noncircular so that vibrations are concentrated near the “weakest” generatrix on the shell

surface. By using Tovstik’s asymptotic method in combination with the multiple scale method with respect to

time, the solutions of the governing equations are found in the form offunctions localized near the “weakest”

line and growing with time in the case of dynamic instability. The dependence offundamental frequencies upon

the static nonuniform axial force is studied. For the weak parametric excitation, the region of instability of a

cylinder is determined directly in terms of its geometry, load intensity, andfrequency.

1 Introduction

Vibrations of cylindrical shells under initial static and dynamic axial loads are of great practical interest. The

influence of static axial force (as well as of other kinds of loading) on the shell vibration has been examined by

Herrmann and Armenakas (1962). Penzes and Kraus (1972). Their studies have shown that accounting of the

static axial load, not exceeding the static buckling load, may lead to a significant lowering of fundamental fre—

quencies. Various combinations of the static load and periodic loads have been considered by Yao(1963), Wen-

zke (1963), Vijayaraghavan and Evan-Iwanowski (1967), and Grundman (1970). In particular, they have in—

vestigated the problem of dynamic instability of shells subjected to periodic axial load, and established the re

gions of instability and stability.

In all the investigations mentioned, shells have been assumed to have constant parameters, and loads have

been uniform. The general goal of the present paper is to study free vibrations and the parametric instability of

noncircular cylindrical shells which experience static and additional periodic axial loads being nonuniform in

the circumferential direction. It is assumed that both the nonhomogeneity of loading and the curvature vari—

ability cause the localization of oscillations in a neighborhood of the generatrix which is the “weakest” one. For

the first time, similar localization of modes was examined by Tovstik (1983). Afterwards, the approach devel—

oped by Tovstik has been used for studying local low—frequency vibrations of elastic and viscoelastic cylindri—

cal shells with slanted edges (Filippov, 1993; Mikhasev, 1992a) and variable thickness (Mikhasev, 1992b), and

nonuniformly heated viscoelastic cylindrical shells (Botogova and Mikhasev, 1996) as well. The method of

multiple scales has been used by Mikhasev and Kuntsevich (1997) to study local low—frequency thermo—

parametric vibrations of a noncircular cylinder in a nonstationary temperature field. In the present article,

Tovstik’s asymptotic method in combination with the multiple scale method over time will be applied for ana-

lyzing free and parametric vibrations of a cylinder in the vicinity of the “weakest” generatrix on the shell sur-

face.

2 Basic Equations

The cylindrical shell is assumed to be elastic, isotropic and sufficiently thin for applicability of both the

assumptions of the classical shell theory and the asymptotic methods. We introduce an orthogonal coordinate

system s, (p, where s =xR71, x is a point coordinate on the generatrix, R is the characteristic size of the

middle surface (it will be defined below), (p is a circular coordinate on the shell surface so that the first

quadratic form of the middle surface takes the form R2 (ds2 + dtpz). In this case the curvature radius is
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R2 = RX—1((p). It is assumed that OS 3 S1: L/R, OS (p S (pl, where L is the shell length. The shell may be

not Closed in the circumferential direction ((pl < 27c); in this case, one has the noncircular cylindrical panel.

Let the shell be under the combined nonuniform axial load

F4: : Eh{Fo ((P) + 11[F1 (<p)sin£2*t* + F2((p
)cos

(1)

where E and h are Young’s modules and the shell thickness, respectively, u4 = h2/ [12R2 (1—v2)] is a small

parameter, v is Poisson’s ratio, t* is time, (2* is the frequency of the additional periodic axial load. If F,2 +

+ F22 = O for any (p, free vibrations under the initial static load will be considered. In the case F]2 + F22 at 0,

where F1, F2 ~ 1 as u —> O, parametric oscillations and instability caused by the small additional periodic

forces will be studied below.

We will analyze vibrations which are characterized by large quantity of waves in the both directions on the

shell surface. Then the following equations (Bolotin, 1956; Vlasov, 1958; Tovstik, 1995)

    

ach 82W 82W
4A2W— 2 + 2F ‚z + =0

H H Xßp) 8s2 H ((p ) 832 8:2

2 2 82W

u A <I>+x(<p) as, =0 (2)

written in nondimensional form can be used in our investigation. Here A = 82/852 + 82/8th and the dimen—

sionless magnitudes are introduced as follows:

W = CW*/ R CD : C<1>"‘/(„2 EhRZ) F = F*/ (mm)

2‘: t*/tL. IL. = „lpRZ/E

F = mm) + „[F, ((p)sith + 172((p)c0th] Q = 9* r, (3)

where W * and (I) * are the normal deflection and the stress function, respectively, p is the mass density, tC is

the characteristic time, and C is an arbitrary constant. The functions X(tp), I ((p) are supposed to be infinitely

differentiable. It is assumed that F((p, t) < Fb , where F}, corresponds to the classical value of the static axial

buckling load (Timoshenko, 1936).

Let the shell edges be joint supported so that at the edges s = 0 and s = l Navier’s conditions

  

= 0 (4)

are realized. To satisfy boundary conditions (4) the solutions of equations (2) are assumed to be of the form

W = wm (q), t) sin (it—1 pm s) q) = fm((p, t)sin(u_1 pm 3) (5)

pmzttmnll m=1,2,...
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Substituting (5) into (2) yields the sequence of equations

4——84w’” - 219192 —azw’” + p2 X(<P)f +[P4 — P2 F((P 91W + azwm = 08(94 m am; m m m m ’ m 8t2

(6)

4 a4fm _ 2H2p2 azfm

“—4 möq); + fm _ przn Wm = 0

am

with respect to wm, fm for m = 1, 2, . The subscript m in pm, wm, fm will be omitted below.

3 The Approach

Taking into account both the inhomogeneity of the axial load and the curvature—variability we suppose that

vibrations are concentrated near some generatrix (p = (p0 which will be defined below. The uniformly valid

asymptotic solution of equation (6) in a neighborhood of the line (p 2 (p0 may be constructed in the form of

WKB—functions (Tovstik, 1983) with amplitudes growing in time (Mikhasev and Kuntsevich, 1997)

WW’ I’ p“) E ENC/2W1: (a? to tl)exp{i1:H—l/2q§ + äbä}
(7)

k=0

0..
. 1

m” t7 195 ZHk/ZMÄ to, t1)6XP{1[”‘1/2q§ + 5/9621} (8)

k=0

ä:H’I/2(
(p_(po)

t0:t

where Im 17 > 0, wk , fk are polynomials in Time dilatation (8) is performed here to find the amplitudes of

parametric vibrations as the functions of “slow time” 2f,- (Nayfeh, 1973).

The functions X((p) and F,- ((p) are expanded into series in the neighborhood of the generatrix (p: (po‚ For

example,

I 1 II

170(9):F0((Po)+H1/2FO((PO)§+EuFO((pO)&2+...
(9)

Substituting equations (7) and (9) into equation (6), and eliminating the functions fk , produces the sequence of

equations

k

2D]. wk_j:0 k=0,1,2,... (10)

1:0

where

a2

Do =—3+ H(P‚ (1a (Po) (H)
Bro
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2 4

2 p
H(p‚ q, (Po)=(172+q2) +%%)7—2 + Fo(<po)p2 (12)

(P W)

3H 8H BH a

D = b—+ afi—
‘ [ aq amok aq 8%

(13>

     

2 2 2 2 2 2 2

D2=Lbzalj+2bö_H+aI5]gz-iböf+ 8H gLialjpbn—J
2 aq 861890 8ch Öq aqa‘Po 3€ 2 aq 8%

 

i 82H 82
—— + 2

2 aqacpo atoat]

 

+ N,

N : — p2 [171(90)singz + F2(Lpo)coth] (14)

3.1 Zeroth and First Order Approximations

In the zeroth order approximation (k = O) differential equation (10) is a homogeneous one, which has the solu-

tion

WO(E_„ t0, t1) = w0‚C(E„ t1)coswt0 + Wadi, z‘1 )sinwto (15)

Here woyc and Wm are unknown polynomials in E_‚ with coefficients being functions of “slow time” I] , and fre—

quency 0) and wave number q satisfy the equation

of =H(p‚q‚<po) (16)

For k = l in equation (10), one has a nonhomogeneous differential equation. The right part of this equation,

with equation (16) in mind , generates secular terms with respect to to . The absence conditions of these terms

are

2x’(<po)-F6(<Po)=0 qZZX1/2((P0)P—P2 (17)

or

2x(<Po)X’(<Po) — :92 Fo’(<po) = 0 q = 0 (18)

Then

w = Px/2X((Po)— Fo(<po) (19)

or

w = x/p4 — Fo(cpo)p2 + x2(<po) (20)
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for cases (17) and (18), respectively. Let (p0 = (1)"O , q = q°‚ (n = 00° satisfy equations (17) and (19) or (18) and

(20). Then Dl w1 E 0 and equation (10) for k = 1 admits the solution in the form (15) again, with the subscripts

(O, c) and (0, s) being changed to (1, c) and (l, s), respectively.

It may be seen from equations (19) and (20) that F0 < F}, , where F1, = 275((93) in case (17) or

Fb = p2 + X2((p8)p_2 in case (18). The generatrix (p = (93 is called the “weakest” one (Tovstik, 1995) because

under F0 = Fh the shell buckling takes place in the neighborhood of this line. It is here assumed R = R2(<p3)

as the characteristic size of the middle surface of a cylinder so that x((p8) = l.

3.2 Second Order Approximation

Consider herein the case when 9 z 2w° . It is assumed that

Q=2w”+uo o~1 as u—>0 (21)

where <5 is a detuning parameter (Nayfeh, 1973) for the frequency Q of the additional periodic axial load.

For k : 2, differential equation (10) is nonhomogeneous again. It is simplified if one notes conditions (17) -

(20) giving DIM/1°20 (here and below superscript ()0 means that all calculations are carried out for

cpo = (93 , q z q°‚ u) = 03° ). The right part in equation (10) for k = 2 generates secular terms. The absence condi—

tions of these terms, taking into account equation (21), gives the system of differential equations with respect to

T

X: (Wo,saWo,c) v

   

2 a 2

—ia—H2a—§+a§a—X+[c§2 +lan—GX—2w°E_lg¥—=O (22)
2 aq ag ag 2 az1

where

2 o 2 o 2 o 2 o 2 0

H a H 1 8 H H a

a=—i ba—2—+ c=—— b2 2 +2ba——+ Ii <23)
aq aqacpo 2 861 9613(1) 3%

G:[811 812] E_]:{0 1)

821 822 —] 0

821:812 822 Z’gll Fjo =Fi((p:))

g =—ip2(F°sinot +F°cosot) g =—1—p2(F°coso't —F°sinot)
11 2 1 1 2 1 12 2 1 1 2 1

Equation (22) has a solution in polynomial form in E if c = 0. Hence

b = %p{FO' +1[4(X’2 + — (F52 + 2F5j]1/2}(p — 122)”2 (24)

 

(902(1):)

or
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' I II II

b=1%[2(x2+x )—p2F0] (194—1) (25)

‘90 2 ‘9?)

for (p23 satisfying equation (17) or (18), respectively. One can see that Im b > O if

p <1 4(;(’2 + X”) — FO'2 — 2F0” > 0 (26)

or

p >1 2(x’2 + x") — pZFO” > 0 (27)

Therefore, in the case p < 1, the “weakest” generatrix q) = (pg is found from conditions (17) and (26), and for

p >1 it is determined from conditions (18) and (27). It should be noted that the inequality p < 1 corresponds to

a long cylinder. The case p = 1 is not considered here. The following particular cases may be picked out: (A)

for x 21 and FO = FO ((p) (the circular cylinder under the nonuniform axial load) Vibrations are localized near

the line where F0 ((9) is maximum; (B) for X = x((p) and a constant F0 (the noncircular cylinder subjected to a

uniform force) oscillations are concentrated near the generatrix along which the curvature x((p) is minimum.

Taking into account equation (24) or (25), equation (22) has the solution

x: ZYkak Yk =(sk,ck)T (28)

k=0

where Sk (t1) and Ck (t1) are functions satisfying the following system of differential equations with periodic

coefficients:

Yk—AkYk=BkYk+2 k=n,n—1,...,0 (29)

Here

2 o

B„:B„_1=O 12.,(=(1+—k)(20+—k)a—HZE_1 fork:n-2‚...,O
40) aq

—alsin(6t1 —6) a cos(c5t1 —6)—a ’

Ak(t1)= 1 . 2" (30>
a1 cos(c5t1 —6)+a2‘k a1 s1n(6t1 —6)

2 o 2 o 2

p (F1) +(F2) i(1+2k) 32H“ 82H”

a1=——’:—— a2.k:-—„- 7+—
400 40) aq agach

cos9 = F2

Sinezlwfief <a°>2+<Fz>2

The procedure of seeking functions wk may be continued indefinitely.

4 Free Vibration

If the additional periodic axial forces are absent (E2 + F22 = 0 for any (p ), then system (22) admits the follo-

wing solution:

w0,_\,(§, t1) = Hn(§)(c1cos(o§”)t1 + c2 sinwE’Wl)

wo’s (ä, q) = H“ (c2 cosoogml1 — c1 sine)?” t1) (31)
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where Hn(§) is Hermite’s polynomial of the nth degree, c,- are arbitrary constants, and

 

at") = + nja (32)

Then

W* = CR sin ml“ exp{iu’1[q° ((p — (p3) + ä b((p - (PS

><{H„ [u"1/2((p — (pg )][c1 cos (m*t*)+ c2 sin(w*t*)] + 0(u1/2 (33)

is the mode of free vibrations with the fundamental frequency

(0* = Jg[00° wan”) + 009)] (34)

where, in particular for a noncircular cylinder under the constant force F0 (case (B)), parameters (0° and (1)5”)

are

(35)

(36)

 

It may be seen that increasing the axial load F0 leads to decreasing (0° and increasing the correction Lung”) ,

i.e., the influence of curvature—variability on fundamental frequencies grows with the axial force. However, for

formula (34) to be asymptotically valid it is necessary to require 00%") ~ 1 as u —> 0; it is not fulfilled if

F0 a Fb .

5 Parametric Instability

For F12 + F22 ab O, the approximate formula for the normal deflections

 

W* = CR sin mzx exp{iu’l [cf (q) — (pg)+ ä [9((p - (DEV

x :u“k/2(cp—(p3)k [Sk(ut)sinw°t + Ck(ut)cosw°t]+ 0011/2) (37)

k=0

describes parametric vibrations of a shell in a neighborhood of the line (9 = (p?) . Depending on the correlation

of parameters (11, a“ ‚(5, this vibration will be stable or not. The stability region for system (29) has been

established and is plotted in Figure 1 of Mikhasev and Kuntsevich (1997). For points (6/a1 , a“ /a1) lying in

the shadowed area, the amplitudes of parametric oscillations are functions growing infinitely with time. Out-

side of the shadowed area, where 6, a1 , a” ~ 1, amplitudes are bounded.
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